Planks’ Constants

S.D. McCartan T.B.M. McMaster

One of the hazards to be faced by the student of general topology is tg
proof of existence of spaces which are Tsx (i.e. completely regular, or 'I‘;
chonoff) but not T, (ie. normal). The “standard example, the Tychonc%
Plank (see [3]), has perhaps an unnecessarily austere public image since j
usual presentation requires familiarity with ordinals which many undergr.
uates have not acquired. We here call attention to an alternative examp
due essentially to Thomas [4], which has no such prerequisite. Assuming g i
elementary understanding of cardinal numbers we go on to show how to exen
the construction to produce a family of non-normal Tychonoff spaces, and
discuss some questions which this extension raises.

Example 1 (The Thomas Plank (see [3]).) Let X and Y be infinite di
crete spaces, where X is uncountable. Form their Alexandroff (“one-pomt"
compactifications A(X) = X U {co} and A(Y) = U{oo}, their product spac
A(X) x A(Y), and its subspace

= (A(X) x A(Y)) \ {(c0, o0)}

(If desired, A(X) may be defined as carrying the Fort topology 7 U (oo
where -y denotes the cofinite topology, and ¢(co) the excuded point topolog?
in which the non-universal open sets are those to which co does not belon
— see [3].) Since A(X) and A(Y) are compact and T3, as may be seen eithe
from the local compactness of X and Y or directly from the definition, so s‘
their product which is thus T, and T} 1 also. Now the subsets

T=Xx{oo}, R={oo}xY

are closed in P. If, however, it were possible to find dispoint open subsefff
G,H of P with T C G and R C H, choose a countably infinite subset Y’ of }
and note that

(i) H would have to contain all but finitely many points on each horlzontai

cross-section X X {y'} of X x Y”, from which it follows that (X x Y) \E
is at most countable, whereas «
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(i) G must contain at least onme point (indeed, infinitely many points) on
each vertical cross-section {z} X Y’ of X X Y', and s0o (X x Y') NG is
uncountable.

These observations cannot be reconciled with the disjointness of G and H,
and the contradiction establishes that P is not Tj.

Note that this example could be simplified by taking Y to be countable,
thus rendering the selection of Y’ unnecessary. (Indeed, even further siimpli-
fication can be achieved by abstraction. Begin with an uncountably infinite
set X, let z € X and let Y be a countably infinite subset of S\ {z}. Consider
X with the Fort topology yUe(z), the product space X x X, and its subspace

= (X x X)\{(z,2)}; then T = (X\ {2}) x {2}, R = {2} XY are each closed
in P, and a routine modification of the previous argument will suffice.)

Remarks The source of the contradiction here is the existence of a cardinal
number, in this case Ry, which is less than that of X but exceeds that of
the complement of a “neighbourhood of infinity”. It is easily seen that we
can obtain other examples of non-T, spaces just by replacing ¥o by another
infinite cardinal; further, it will be convenient to allow different cardinals to
be associated with X and with Y. More thought, however, is needed to ensure
that we not not lose the T 3 property in the process, since the demonstration
of this depended on three Tesults which could be described as “cardinality-
sensitive”, namely

(a) A(X) is compact,
(b) the product of two compact spaces is compact,

(c) compact plus T, implies T}.

This is what will occuply most of our attention for the remainder of the present
note.

Definitions Let o denote an infinite cardinal number. A topological space X
is called a-compact (see [1] or, for a more recent reference, [2]) if every open
cover of X has a subcover consisting of fewer than o sets. Thus, for example,
Ro-compactness is just (classical) compactness, and Rj-compactness is the
Lindelof property. Given any space X, choose an object co which does not
belong to X and denote by Ao{X) the topological space defined on X U {co}

by declaring open
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(i) the open subsets of the space X,
(ii) the complements in X U {co} of the a-compact closed subsets of X, and

(iii) X U {oo} itself.

The obvious modifications of the Alexandroff argument will sow that A,(X) )
is a a-compact and contains X as a subspace, and that X is dense in 4, (xy
precisely when X is not a-compact.

Lemma 1 Suppose that X is a discrete space. Then Aq(X) is T3y for an
finite cardinal a.

Proof It is certainly T} since singletons are a-compact. Now if F is a give
closed subsety of A,(X) and p ¢ F, we consider two cases:

(a) p=co. Define f: Ao(X) — [0,1] by f(y) =1ify¢ F, fly) =0ifyEF
(b) p# oo. Define f : Aa(X) —[0,1] by f(p) =1, f(y) =0for all y # p.

In either case f is constant on a neighbourhood of co and thus continuous
there. Every other point of Aq(X) is isolated, so continuity elsewhere is
automatic.

Example 2 Choose any two infinite cardinal numbers  and f. Denote b
& the supremum of all cardinals less than o, so that if o has an immedia
predecessor than & is the predecessor, while if not we have & = a. Choo
sets X and Y whose cardinalities satisfy

card(X) > a, card(X)>p, card(Y)>5.
Give X and Y their discrete topologies. By the lemma, the subspace

= (Aa(X) x Ap(¥)) \ (00, )

that

B.a which is less than card(X ), whereas

(i) G must contain at least one point on each vertical cross-section of

X x Y’, so the cardinality of (X X Y') NG is at least card(X).
Thus the same contradiction as before has arisen, and P cannot be Ty.

ﬁ; sets is open is called a-saturated (see [1] again).
- saturated, a discrete space is a-saturated for every cardinal number @, and

of the product space Aalpha(X) x Ap(Y) is Tyy. Now if T,R,G and H are
as in Example 1, choose a subset Y' of YV’ havmg cardinality £ and observe; |
~ result:

(i) the relative complement of H in each horizontal cross-section of X X Y*
has cardinality at most &, and so the cardinality of (X xY’)\ H cannot exceedg
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 Remarks Since 8 = Ro, the special casea = 8 = Ro coincides with Example
1. If instead we choose a = R; (noting that 8; = Rg) and f = Ry, we
obtain a construct whose behaviour closely resembles that of the Tychonoff

ﬁ' Plank. What we have obtained, then, is a family of “planks”, parameterized

so to speak by the two cardinals o and § which we regard as the “constants”
describing a particular plank. The authors would at this point like to apologise
for the excruciating pun in the title of this paper.

It is interesting to note what happens when one attempts to establish
the T31 property (for Example 2) not directly, as in the lemma but by re-
examining the points (a), (b) and (c) in the remarks following Example 1. Now
Aq(X) is a-compact, but it is not in general true that a product of a-compact
spaces is a-compact (see [3] for a simple example — Sorgenfrey’s half-open
square topology on a real plane—of a Lindelof space X such that X x X
is not Lindeldf) nor that an a-compact T space is Ty (for instance, see [3]

again for the relatively prime integer topology on the positive integers). There
- are, however, special circumstances in which this line of argument recovers its

validity, as we shall now see.

~ Definitions (i) An infinite cardinal number a is called addstively snaccessible

if it cannot be expressed as the sum of a lesser number of smaller cardinals:

~ that is, if it is impossible to obtain a set of cardinality o by forming the

union of a family of subsets, where cach subset and the index set of the family
have cardinality less than o. It is easily seen that a cardinal which has an
immediate predecessor is additively inaccessible, but the problem of existence
of other examples would lead us too deeply into axiomatic set theory to be

~ appropriately discussed in this note.

(ii) A topological space in which each intersection of fewer than o open
Thus every space is Ng-

it is readily checked that, for discrete X, A, (X) is a-saturated provided that
a is additively inaccessible; indeed, we can as readily obtain a more general

Proposition 1 Let o be an additively inaccessible cardinal number; then

(i) the union of fewer than o subsets of a space X, each of which is a-compact
is a-compact;

(ii) if X is a-saturated then so is A,(X).




36 IMS Bulletin 20, 198

t € I}, where card(]) < a, is a family of a-compact setsi
: j € J} of open sets, they

15 € J(i)}

Proof (1) If {C’

whose union is contained in that of a family {G;

for each i in I there is a subset J(i) of J such that C; C U{G;

and ca.fd(J(i)) < a. SoY{Ci :+ e I} C U{G; :
= |J{J (%) : © € I} has cardinality less than a.

(11) Consider z € G = [{G: :

open neighbourhood (in X) of z and is contained in G. If z = oo then X \ ol
is a-compact by (i), and closed in X because X is c-saturated. Thus G is
neighbourhood of each of its elements, and must be open.

Proposition 2 Let X and Y be a-saturated and a-compact, where o is ad
ditively inaccessible. Then X X Y is a-compact. .

Proof Given an open covering {Gg: f € B} of X x Y, let y be any element
open J(z,y) € Y such that

(z,9) € H(z,y) x J(2,9) C Gp(a,y) -

denotes the (open) intersection of the J(z,y) which correspond to these, we
for which card(By) <a.
that card(Y’') <aand Y CU{Jy: v € Y'} Then
XxY=U{XxJ,,:y€Y'}§U{Gp:ﬂEU{By:er’}}
where [J{B, : y € Y’} has cardinality less than , as required.

Proposition 8 If X and Y are a-saturated topological spaces, then so i
XxY.

The proof is elementary.

Proposition 4 An a-compact, a-saturated, T, topological space is Tj.

j € J'} where the se;

i € I} where card(I) < « and each G; i ls
open in A,(X), X being a-saturated. If z € X then ({G; N X :d€ [} is

of Y. For each z in X we can choose f(z,y) in B, open H(z,y) C X andi

Now fewer than a of the sets H(z,y) will suffice to cover X; and if J'::

see that X X J, is covered by a subfamily {Gs: § € By} of the given cove

Now the sets Jy, for y in Y, cover Y; so there is a subset Y’ of ¥’ such‘

The proof is the obvious modification of that of the classical case a = R
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Remarks These four propositions constitute an alternative proof that the
space Aq(X) x Ap(Y) in Example 2 is Ty (and therefore that P is T33), but
only in the case where a and § are additively inaccessible and equal. Thus
they add nothing to our understanding of Example 2, and are included here
partly for their intrinsic interest and partly to point out how a relatively
innocuous-looking topological question can quickly lead to areas of set theory
in which Zermelo-Fraenkel will not suffice.

References

[1] M. Fitspatrick and S.D. McCartan, Homogenesty and Extremely Conver-
gent Spaces, Proc. Royal Irish Acad., 76A (1976) 111-116.

[2] M. O Searcéid, An Essay on Perfection, Bull. Irish Math. Soc., 18(1987)
9-17.

[3] L.A. Steen and J.A. Seebach, Counterezamples in Topology, Holt, Rinehart
and Winston Inc., New York, (1970).

[4] J. Thomas, A Regular Space, not Completely Regular, Amer. Math.
Monthly, 76(1969), 181.

Department of Pure Mathematics
The Queen’s University of Belfast
Belfast BT7 1NN, Northern Ireland.




