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Asymmetric Cryptography
Patrick Fitzpatrick

1 Introduction

In recent years a great deal of attention has been focussed internationally on
the twin problems of security and authentication in the use of electronic com-

‘munication systems for a wide variety of transactions including information

storage and retrieval, banking and financial transactions and the transfer of le-
gal documents (contracts, invoices etc.). These problems may be summarised
as follows:

(a) security — the message must not be capable of imterpretation or alteration
in any way by an unauthorised person;

(b) authentication — the identities of the parties involved in the communica~
tion must be reliably established in such a way that neither can later repudiate
any part of the transaction.

The need for cryptographic systems is thus placed firmly in the public
domain and is no longer the sole preserve of government, diplomatic and
military establishments.

The classical solution to problem (a) is the encryption of messages using
a secret key known only to the transmitter and receiver. The key itself must
be exchanged by some reliable method — a trusted courier, for instance.
However, as the number of participants grows (consider, for example, the
national and international branch network of a large banking corporation)
the problem of distribution end secure storage of keys becomes exceedingly
difficult. Moreover, the classical method provides no solution whatever to
problem (b).

Since the publication of Diffie and Hellman’s fundamental paper [8], it
has widely been recognised that asymmetric (or two-key or public-key) cryp-
tosymtems represent sn theory the best approach towards a solution of these
problems. In practice there are few realistic working models — proposed
implementatins have either been shown to be insecure or too costly for ap-
plication in general. As a consequence, a good deal of research has also been
devoted to other methods (such as Siegenthaler’s work on stream ciphers [40

41]) and, in addition, attempts have been made to apply asymmetric tech-
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niques to restricted types of transaction. i i j
Tajor esearch ofot by the B Fog This latter area is t.he} subject of a

The purpose of this article is to review progress in asymmetric cryptogra-
phy, concentrating on the two principal proposed schemes — knapsack methods
and RSA methods. These topics were the subject of M.Sc. project work carried
out at University College, Cork in 1987 and I am grateful to my students Ian
Ho!land, Harry Lande and Michelle Skiney for their endeavours, the results of
which can be found in [14], [18] and [44] respectively. This survey owes much
to their diligence.

Many readers will also be familiar with the central ideas of asymmetric
cryptography. Simmons’ Intelligencer article [43] is an excellent introduction
(see also Gardner [9]), while Denning [7], DeMillo [6] and Simmons [42] all
provide more comprehensive treatments of cryptography and data securit
.\g’e conclude this introduction with a brief summary of the essence of the::;
ideas. :

Both parties to a communication have an encryption function E and a
decryption function D with the following properties:

(i) D(E(M)) = M for every valid message M;
(i) E and D are easy to compute;

(iii) it is computationally infeasible to determine D from a knowledge of E
A fourth property which may or may not be present is
(iv) E(D(M)) = M for every valid message M.

The key distribution problem is solved when each user places his encryption
function in a public file. When user A wishes to communicate “plaintextl;)” M
to user B he transmits the “ciphertext” Ejg (M) using B's public encryption
function Ep. On receipt, B calculates Dy (Ep (M )) = M using his gezret)
decryption function Dp. (In practice the actual algorithms used will be known
to all‘ parties — including potential intruders. The unknown part is the en-
cryptl?n/decryption key. Here, and throughout the Ppaper we are referring to
“algorithm plus key” as the “encryption /decryption function” .) The securst
.problem is solved provided an intruder can neither interpret Eg (M) — whicli/
is the classical requirement — nor tamper with it. Property (iii) is crucial
in this regard. Finally, the authentication problem is solved in the presence
of property (iv), by the following protocol: A sends both Ep(M) and Eg(S)
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where S = Da(M); on receipt B computes Dp (Ep(M)) = M and compares
it with EA(DB(EB(S’))) = EA(S) = EA(DA(M)) = M using A’s public en-
cryption function E,. If these are identical B is assured not only that A is

the transmitter (since only A knows D4) but also that the message sent was
fact M. Thus S is A’s (message dependent) signature appended to the par-
ticular plaintext M, so it is ensured that A cannot later deny having sent the
message or repudiate any of its content. Acknowledgement by B and message
confirmation is required also and it is clear how an independent third party
uch as a court of law) can establish the facts of transmission and reception
gether with the content of the message, in much the same way as is currently
e case with paper transactions.

The existence or otherwise of functions satisfying (i) — (iii) or (iv) has
t yet been established. Attempts so far have concentrated on the idea
of putting some well-known hard problem between knowledge of E and D in
ch a way that some additional information will allow (computationally) easy
cess from one to the other. Thus the encryption function is regarded as a
“sne-way” function, that is, a function F for which f(z) is easy to compute for
every z, but for which, given y, it is computationally infeasible to determine
z such that f(z) = y without some additional “rapdoor” information. The
o best-known attempts have tried respectively to put the knapsack problem
d the integer factorisation problem between E and D. We take these up in

turn.

2 Knapsack Methods

_The general knapsack problem is as follows. Given a set of n postive integer
‘weights a = (a1,...,08,) determine whether a weight N can be obtained by
‘adding together a subset of the given weights, that is, whether there exists a
‘binary vector with n components m = (my,...,m,) such that N =m.a. It is
well-known (see [10], for example) such that in this generality KNAPSACK is
in the class NP — a proposed solution m can be checked in polynomial time,
_but no polynomial time algorithm is known for determining a solution m from
and N. Moreover, KNAPSACK is NP-complete so in a semse it is among
e most difficult of NP problems. However, some instances of KNAPSACK
e easy to solve. In particular, if the a; form a superincreasing sequence:
k41 > Doj_paq @ for k= 1,...,n —1 this is clearly the case, since then

» imn‘-'—'lifandonlyifNZGn and, for L < k < n—1, m = 1 if and only if
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-5 ‘a; > Ok
N T%aJ:rki;iln:.l%Jl‘:;a;sazk cryptosystem proposed by Merkle and Hellman (28}

s gcheme. Select a superincreasing sequence a’' and two pos-
;ﬁfrz ti}x::efgo:lr:w}l?l: gQ such that P is inyertible .modulo Q 'and E?_l a;' < Q
Define a; = a;'P (mod Q) for 311 j. Now given the (bma.ry enc?ded) mes.
sage block m of length 7, transmit N = m.a. Here a is the pub}lc-key pa.rt
of the system. Only the receiver, who knows the secret trapdoor mforma.tlo%

(P, Q), can compute
N' = PN = P()_ mjay)
= p‘l(zmja',-)P = Zm,-a',- (mod Q)

. . ' — S mya';. This is easily solved since a' is su.
a:g,f:::;g ‘ Jthth:hz thiszalg;ritjhm can be used for either security o
guthenticatig;l but not both because property (iv) does mot hold — many
plaintexts M are not valid ciphertexts so E(M) cannot be'calculated.

In 1980, Shamir and Zippel [39] showed that the basic Merkle-Hellm :
scheme — l;enceforth referred to as MH — could be broken “‘almost certfnnly,
if the modulus were known to the crypt,ana’lyst.. Lager Shamir ’[.37] descnbet! a
method by which M H could be broken “with .hlgh probability” in polynomial
time. The essential point in his argument is that there are usually m:«’m
so-called trapdoor pairs (Pos Qo) any one of which has thta property .that a
(mod Qo) is superincreasing and gives the .correct decryption f’f the.c1phert.e.
He reduces the search for one of these pairs to a..system of linear mequaht. ;
in several variables — arguing that four suffice in almost.: all cases — whxch:;

teger programming algorithm [21].

ing Lenstra’s in : : .
he t&zzkile;sdugelinan also suggest in [28] that iterating their basic scheme

could lead to improved gecurity. However, building on Sham?r’s work, Adlgf%
man [1] (see also [3]) was able to dem(?nstrate how to break the iterated system.
He uses the “attice reduction” algont.hm of Lenstra, Lenstra a..nd Lovasz [22]
to convert a system of nonlinear equations — under some plausible hypothese%
— to a system of linear inequalities and then uses Shamlf"s approach. He doegg
not prove rigorously that his met}fod works anc.l ext.enswe com.p.utef ca.lculai
tions were required to verify that it does so “with high probability in almos§
all cases” (see [3] for references 2

nd further details).
Several other varian

selves suggest a multiplicative versio

n as follows:

ts of MH are known. Merkle and Hellman [28] them%
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Choose n relatively prime numbers by,...,b,, a prime p such that p >
bibs b, and a primitive root ¢ modulo p. Determine a; such that b = %
(mod p) and use a = (@1,...,an) as the public key, keeping ¢ and p secret.
To transmit the (binary encoded) message m = (my,..., my) calculate k =
E;.‘___l mja; and send k. The receiver, knowing ¢ and p, can find m = ck
(mod p) and since m = ¢* = [[c™i% = J]b]* (modp) and p > [I&;
then m = [[ 67"/ so m; = 1 if and only if b; | m. The intruder must either
find the m; knowing only k and a or else find ¢ and p. The latter brings in
the well-known hard problem of computing logarithms in a finite field (Z,).
This scheme was successfully attacked by Odlysko [30] under the assumption
that some of the b; were known (indeed practical constraints would probably
require them to be small — the first few primes, for example), and later by
Adleman in more generality (see [3]).

It was clear from the start that a possible source of crytographic weakness
in MH lay in the fact that the early knapsack weights in the superincreas-
ing sequence would be significantly shorter (in binary length) then the later
ones. Graham (see Lempel [20]) and Shamir [39] independently described
another variant of MH in which they disguised the superincreasing structure
by “padding” the weights before the modular multiplication so that they all
had approximately the same length. This Graham-Shamir scheme has been
attacked in certain cases — Brickell and Simmons [3] give the details — using
methods similar to those of Adleman. incidentally, at the same time Odlysko
[30] successfully attacked the method outlined by Shamir [36] for using the
knapsack scheme for signatures instead of security.

In more recent developments Shamir [38] (see also Willett [46]) has de-
scribed an iterated knapsack cryptosystem which starts from an arbitrary
initial knapsack and thus avoids introducing the superincreasing structure.
Also, Goodman and McAuley [13] have developed a knapsack based method
which brings in the integer factorisation problem. To our knowledge neither
of these methods has been cryptanalysed.

3 RSA Methods

The original RSA system (Rivest, Shamir and Adleman [34]} is probably the
best known feature of the asymmetric cryptography literature. Given n = pg

. 'where p and q are prime the Euler phi function of n is o(n)=(p—-1)(g—1).

If (e, o(rn)) = 1 and d is chosen so that ed = 1 (mod p(n)) then a message
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m (an integer between 0 and n — 1) can be encrypted as ¢ = m® (mod n)
and decryption is described by the congruence ¢® = m®¢ = mitre(n) = m

(mod n) since m**(") = 1 (mod n) for any k. The public key is (e,n) and pomial function ge(z) = z° to permute the elements of the ring Z, (where

the private key is d. (It is clear that the selection of ¢, d works when (m,n) = 1

and easy to see that the equations hold also when p or ¢ — but not both, of

course — divides m.)

The essential feature of the method is that there is8 no known way using
present day technology of factoring integers with about 200 decimal digits

in any reasonable time. Recent work at the Sandia Laboratories [5] using a

CRAY I computer is based on the “quadratic sieve” algorithm of Pomerance
[32] and focuses on numbers with between 65 and 100 digits. Other fast
factoring algorithms are due to Morrison-Brillhart [29] and Schroeppel (see
[35]) with running times for factoring a 150-digit number of about 9 x 10°

. a,3) = @,z) = o a,z) and Lausch et al [19] prove that
years and 2 X 102 years respectively. Since no-one has yet been able to ind 2 (9 © 90)(3,2) = guvla,2) = (g0 9.)(9, ) [19] p

way of breaking the RSA scheme which does not involve factoring the modulus

(or determining ¢(n) — it is easy to show this amounts to the same thing), the 1 (mod (p? — 1)(¢? — 1)) which means that in using these polynomials for

security is, at present therefore, very high and could be increased if necessary cryptosystems the inherent difficulty of factoring n is again brought into the

s%mply by incre.asing the leI}gtll.s of p and g (but see the' conf:lusion). Also calculation of the inverse v.
since the RSA is commutative in the sense of property (iv), it can be used

for a,uthentication.as. we]'l as security. On the other hand, the operation of eral variables (see [24]) or rational functions (Rédei [33]) to induce permuta-
mod‘ular. expomentiation is very slow .and leads l-;o a throughput rate for the . tions on &y,. To our knowledge none of these polynomial generalisations of the
data which compares unfavourably with competing methods (such as stream " RSA has actually been analysed as part of a practical cryptosystem.

ciphers or conventional ciphers like the Data Encryption Standard [4]).

As a consequence, the greatest efforts — apart from trying to break the

4 Conclusion
speed of the algorithms used in its initialisation and implemention: random

RSA without factoring the modulus — have gone into trying to improve the

number generation, primality testing, determination of greatest common di-
visor and modular multiplication and exponentiation. The primality test sug-

gested in [34] is the probabilistic one of Solovay and Strassen [45] although
the OSIS report [31] claims that the test given by Knuth [15 p.379] is prov-

ably better. Of course the primes used should in some sense be randomly
chosen — several good pseudo-random number generators are known (see, for
example Golomb [12]), but the latest work [31] suggests using some physi-
cal process (such as heat, white noise or radioactive decay) as a source of
truly random numbers. Finally, algorithms for calculations like the GCD and
modular arithmetic are constantly being refined and improved (Blakley [2],

for instance). Recent work by Kung and his associates on systolic algorithms -

and the corresponding computer architecture in providing a new and exciting
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stimulus in this field [16, 17].
In a more general context the RSA may be regarded as using the poly-

(e;p(n)) = 1). Lidl [23] and Lidl and Miiller 24] consider other possible “per-
mautation polynomsals” for use in RSA-type cryptosystems. One such class of

. functions is the set of Dickson polynomials (or Chebyshev polynomials of the

first kind, ) defined by

ef2

ge(a2) =Y - _e_j (e ; ") (—a)z*% (for a = %1)

§=0

(when @ = O we recover the RSA polynomial). In [24], it is shown that

g(a, z) induces permutation of 5, with n = pg and p,q prime if and only if
(e,(p® — 1)(¢® — 1)) = 1. Also, g, is the inverse of g, if and only if uv ==

Further generalisations are possible using (Chebyshev) polynomials in sev-

It is somewhat surprising that only a few proposals have been made for al-
gorithms to implement asymmetric cryptosystems. In fact, apart from those
mentioned above (and various short-lived variations — see, for example [26],
[11]) only ome other has been given, namely, a suggestion by McEliece [27]
(see also [25] p.360) that error-correcting Goppa codes be used — the data is
transmitted with many errors which only the recipient knows how to correct.
In practice the Merke-Hellman scheme has never been used and the Graham-
Shamir system has only been used briefly (by Western Electric), while the
RSA was adopted by several groups and implemented on LSI chips at MIT
(by Rivest et al) and at Sandia National Laboratories. As mentioned in the
introduction the RSA is now the cryptosystem of choice by the European

- working group OSIS in the design of a secure “foken” based payment and
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financial transfer protocol. These implementations represent, however, only
a small minority of the current applications of cryptography. Conventional
cryptosystems such as the Data Encryption Standard or DES [4] are in use to
a much greater extent and this reflects both a lack of confidence in asymmetric
techniques together with the relative inefficiency of the RSA method.

Until now the approach to the design of asymmetric cryptosystems has
been to take some known hard problem and build it into the derivation —
without trapdoor knowledge — of the content of the message and the decryp-
tion function from knowledge of the ciphertext and the encryption function,
Thus solving the hard problem implies breaking the cryptosystem and st u
hoped that the converse is also the case, that is, that the cryptosystem can.
not be broken without solving the hard problem. In no case has this beelﬁ

proved and, of course, as Shamir and others have amply demonstrated, break.

ing the knapsack cryptosystems so far proposed is not equivalent to solving
KNAPSACK in polynomial time.

Thus there remains the underlying doubt as to whether any proposed
scheme is secure and whether it will continue to be so into the future. But, in
addition, there is he even more fundamental question: Do there exist genuine':'
asymmetric cryptographic functions? Simmons [43] calls this “one of the most
important questions in contemporary applied mathematics”.
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