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THE IRISH MATHEMATICAL SOCIETY
OFFICERS AND COMMITTEE MEMBERS

EDITORIAL

President Prof. Sedn Dineen Department of Mathematics The first issue of the Irish Mathematical Society Newsletter (later to be-

. University College me the Bulletin) was published ten years ago, in 1978, two years after the

Dublin un dation of the Society itself. That first issue, modest though it may have

Vice- Dr. Fergus Gaines Department of Mathematics 1 contained all the ingredients which have ensured the popularity of it and

President gn:’ﬁ?ﬁit}' College :si;ccessors, and contributed in no small way to the remarkable growth of the
ublin

ty over the intervening years. While the p%lysica.l appearance may ha've
d during this time in which the editorship was based first in Dub]:m,
en in Cork and now in Galway, the basic policy of the I.Bulletm remains
Maynooth changed; it is to publish a broad range of news, letters, reviews and articles

Treasurer Dr. Gerard M. Enright Department of Mathematics ich will inform, entertain and challenge our readers. ) .
Mary Immaculate College We hope that the News section and the Book Revxew§ will be. found
Limerick ¢ lively, informative and up to date. We welcome Articles which are
pository in style. Particularly welcome are surveys of nfewly‘ (}evelopmg
~ eas, both in pure and applied mathematics in all its mamfestatx?ns. ’Ljhe
otes section is intended primarily for presentations of mathematics which
will be of interest to those teaching the subject at either undergraduate or
: tgraduate level—an illuminating viewpoint, or a new proof, for example.

Department of Mathematics
Maynooth College

Secretary Prof. A.G. O’Farrell

Committee Members: M. Brennan, N. Buttimore, R. Critchley, B. Gold:
smith, D. Hurley, T. Hurley, R. Ryan, R. Timoney. ~

LOCAL REPRESENTATIVES

Cork RTC Mr. D. Flannery Under the heading of Mathematical Education we seek articles concerned
UCC Dr. M. Stynes h the teaching of mat.hematics at a]]l levels.Fﬁixnr:H:leswzn i:;li)t'ea:::;: r:f ;}l:z
Dublin Caryssfort gr. fJ.JC;sgr?ve Hls‘:g?keofoﬁgﬁizssvizrv:saﬁaoa:; i?);f: of intel;):a,st to the mathematical
giéin St. Dl:.) B .Go‘;:s‘;ith unity to contribute to the Letters column.
NIHE Dr. M. Clancy
TCD Dr. R. Timoney
UCD Dr. F. Gaines
Dundalk RTC Dr. E. O’Riordan
Galway UCG Dr. R. Ryan
Limerick MICE Dr. G. Enright
NIHE Dr. R. Critchley
Thomond Mr. J. Leahy
Maynooth Prof. A. O’Farrell
Waterford RTC Mr. T. Power




IRISH MATHEMATICAL SOCIETY

ORDINARY MEETING

December 22, 1988

An Ordinary meeting of the Society was held at 12.15pm in the DIAS. The

President S. Dineen took the chair. There were 20 members present.

1. The minutes of the Ordinary Meeting of April 16*%, 1987 were approved
and signed.

2. The Treasurer presented his report, which was approved unanimously
(proposed by R. Critchley and seconded by M. Brennan). It was re-
ported that the committee wished to increase the reciprocity subscrip-
tion for AMS members to $6, and this was agreed. Also, through the
efforts of F. Holland, the Society was now recognised by the Revenue as
being established for charitable purposes only.

3. The Secretary presented his report.

4. It was agreed to consider holding a meeting of the Society in Septem-
ber. It was also agreed that the President would set up a discussion
at the Easter DIAS Symposium on the degree programmes involving
Mathematics currently on offer in Ireland and on the carreers followed
by graduates of these programmes. Written information which could be
available by then would be very welcome.

5. It was announced that the Committee was seeking a member who could
represent the Society at the American Mathematical Society Centennial
Celebration in Providence, August 8-12, 1988. The Society would be
sending greetings to the AMS on the occasion of their centennial year.

The committee decided to solicit tasteful advertisements for the Bulletin,

The committee had also decided to support three conferences in 1988,
to be held in Dublin (Matrix Theory, March), Galway (Groups, May)
and Limerick (Computers in Primary Education, February).

IMS

6.

A.G. O’Farrell was elected Secretary, G.M. Enright was re-elected Trea-
surer and the following were elected committee members: R. Critchley,
D. Hurley, T. Hurley and R. Timoney. All are elected for two-year
terms. (S. Dineen (President), F. Gaines (Vice-president), M. Brennan,
N. Buttimore, B. Goldsmith and R. Ryan were elected in December 1986
for two-year terms.)

. T. Laffey reported that he and F. Holland were progressing with their

preparations for sending a team to the Mathematical Olympiad in Aus-
tralia in 1988. Introductory sessions for secondary school pupils had
been successfully held in Dublin and Cork so far.

. The committee nominated Professor J.L. Synge to honorary membership

of the Society. (This nomination is to be voted on at the next Ordinary
meeting of the Society.)

Richard M. Timoney,
Secretary




IRISH MATHEMATICAL SOCIETY

SECRETARY’S REPORT

It seems to me appropriate, as I come to the end of my term of office
as Secretary, to reflect on my activities during my periods as Secretan.r. I
would like however, first, to thank all those who res;zonded to my various
requests for help or information. Specifically I would Like to thank the local

representatives. ; ) .
During the past year, the one succesful venture I can point to is the setting

up of departmental electronic mailboxes for the Mathematics departments
at all the HEANET sites in Ireland. The electronic addresses for these are
MATHDEP@VAX1.MAY.IE, MATHDEP@VAX2.NIHED.IE, MATHDEP@VAX1.NIHEL.IE,

MATHDEP@DEC20 . TCD. IE, MATHDEP@IRUCCVAX.UCC. IE, .
MATHDEP@IRLEARN .UCD . IE and MATHDEP@VAX1.UCG.IE. (This and other

HEANET addresses are now easily accessible to all BITNET users in thef
USA and elsewhere. The mail is routed to HEANET automatically through a
gateway facility at UCD and, conversely, HEANET users can send messages

to BITNET users through this same gateway.)!

Although this facility has the potential to be very useful as a means of

delivering messages to mathematicians at other departments whose electronic
addresses are unknown, it has not yet been widely availed of, perhaps because
its existence is not sufficiently widely known. Until there is a steady trickle of
usage, its reliability may be in question, since the person checking for mail to
MATHDEP may not do so regularly if there does not seem to be traffic.

The EUROMATH project is perhaps relevant in this context as it aims to
facilitate electronic mail usage between mathematicians, among other objec-
tives. A significant part of this project is being carried out at NIHE Dublin
under John Carroll. Some years ago Irish mathematics departments showed
their enthusiasm for the basic ideas of EUROMATH by contributing towards
the costs of preparing a proposal for EEC funding. Members may recall that
A.K. Seda of UCC represented the Society at some of the early meetings on
the scheme and was largely responsible for bringing it to our attention.

Other positive notes in the recent past of the Society were the joint meet-
ing with the London Mathematical Society on Operator algebras (which was
organised by T.T. West) and the recriprocity agreement with the American

1Ed: Addresses amended 3/88

IMS 5

Mathematical Society. In my view the Bulletin has continued to improve
steadily under the editorships of D. Hurley, P. Fitzpatrick and R. Ryan and I
certainly hope that this trend will be maintained. »

There are a few matters on which I feel that the Society needs to exert more
effort, through the committee. I think it would help if the committe could
arrange to meet more frequently. It is often hard to gemerate enthusiasm
for committee meetings which involve special long journeys for at least some
of the members. It might be reasonable to have a policy that committee
meetings should be arranged to coincide with conferences which are partly
sponsored by the Society (e.g. Groups in Galway). September is a time when
a committee meeting would often be useful. This year there was a plan to
hold a conference (or meeting of the Society) in UCD in September, which fell
through. We should perhaps consider having a one-day meeting of the Society
annually (say in September) much as the LMS and the AMS do on a more
frequent schedule.

I think that it is important that the Society should make it a priority to
cater equitably for all strands of mathematical interests in Ireland. A step in
this direction would be to find out what the strands currently are. To some
extent the Bulletin and the DIAS Symposia may serve this function, but I
feel that a report on the needs of or for mathematics in Ireland could be a
valuable focus for future planning on many levels.

Richard M. Timoney
December 22, 1987




NEWS

Personal Items

e Professor J.A. Barroso (Rio de Janeiro) is presently visiting the
Mathematics Department of UCD.

e Professor Irene Hazou of Bethlehem University, West Bank, visited
the Mathematics Department of UCD recently to discuss curriculum
development in mathematics. Her visit was sponsored by HEDCO (the
Higher Educational Development Corporation).

e Professor Wang Ming-Ci, Vice-Chairman of the Mathematics De-
partment of Chengdu University of Science and Technology, Sichuan,
China, and a member of the Guiding Committee of Mathematical Ed-
ucation in China, visited the Mathematics Department of University
College Galway recently to investigate the teaching of mathematics to
Engineering students in Ireland. She lectured to the department on the
present state of mathematical education in China.

e Professor H.G. Dales of Leeds University, is presently visiting the
Mathematics Department of Maynooth College.

e Professor J. Verdera of the University of Barcelona, will be visiting
the Mathematics Department of Maynooth College during Jume and
July.

e John Kinsella has been appointed Lecturer in Mathematics in NIHE
Limerick.

e Peter Danaher (Aunckland) has taken up a one-year appointment in
the Statistics Department at UCD.

NEWS 7

¢ Siddartha Sen of the Department of Applied Mathematics at TCD,
is presently visiting Fermi Lab and Carnegie-Mellon University in the
United States.

e Paul McGill has resigned his position in the Mathematics Department
of Maynooth College.

o Eamonn Murphy has been appointed Assistant Lecturer in Mathe-
matics and Statistics in NIHE Limerick.

o Joe Buckley has left the Department of Mathematics in NTHE Limerick
to take up a position in Australia.

e Phil Rippon, our Problem Page Editor, has been promoted to Senior
Lecturer in the Mathematics Department at the Open University.

e Niall 0 Murchadha of the Experimental Physics Department of UCC
has been promoted to Statutory Lecturer.

e P61l Mac Aonghusa has been appointed to a one-year position in the
Mathematics Department of Maynooth College.

e David Walsh has been promoted to Senior Lecturer in Mathematics
in Maynooth College.

Statistics Position in UCD

Professor Phil Boland will welcome applications for a three-year appointment
in the Statistics Department of University College Dublin.
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New Appointments to LMS Editorial Board

Professor Brian Twomey of the Mathematics Department, UCC and Dr. Phil
Rippon of the Open University have been appointed to the Editorial Board
of the London Mathematical Society for a 5-year period, beginning on 1st
January 1988. Authors wishing to submit a paper for publication in any of the
three journals (Bulletin, Journal and Proceedings) of the LMS send papers in
the first instance to the appropriate member of the Editorial Board. Professor
Twomey will handle papers in Complex Analysis and Fourier Analysis, while
Dr. Rippon will deal with Potential Theory and Complex Analysis.

National Committee Newsletter

The National Committee for Mathematics of the Royal Irish Academy hopes
to publish a mathematics newsletter between issues of the IMS Bulletin. The
editors are T. J. Laffey and M. Hayes. They will welcome any items about
conferences and other mathematical events.

Lecturing in Developing Countries

The ICSU and the TWAS (Third World Academy of Sciences) are jointly or-

ganizing a Lectureship Programme through which they will finance the travel
of scientists from any part of the world to give scientific lectures in developing

countries. Further details can be obtained from the National Committee for |

Mathematics of the Royal Irish Academy.

Charitable Status for IMS

Thanks to the efforts of Finbarr Holland, the Irish Mathematical Society is
now regarded by the Revenue Commissioners as established for charitable
purposes only.

NEWS ‘ 9

ICM 90

The next International Congress of Mathematicians will be held in Kyoto in
1990. The National Committee for Mathematics of the Royal Irish Academy
has been asked for suggestions for speakers and, in accordance with previous
practice, will welcome any assistance that IMS members can provide. Each
suggestion should be motivated, and should include a short list of publications.
These should be sent to the National Committee for Mathematics, Royal Irish
Academy, 19 Dawson Street, Dublin 2, before 31st October 1988.

The outgoing President of the IMU, Jirgen Moser, has appealed for funds
to enable young mathematicians from developing countries to attend the
Congress. For ICM 86 the IMU provided travel grants for over thirty young
mathematicians, but contributions from members did not come up to expec-
tations. He is appealing for a better response this time. Donations to the
Special Development Fund can be sent to the Academy up to the end of 1989.
Cheques should be made payable to “Royal Irish Academy” with a covering
note clearly stating that the contribution is intended for the IMU Special
Development Fund.

A Remarkable Coincidence!

We invite readers to compare the following extracts from Mathematical Re-
views:

Harte, Robin(IRL-CORK) 85b:47024
Almost open mappings between normed spaces.
Proc. Amer. Math. Soc.90(1984), no. 2, 243-249
Harte, Robin(IRL-CORK) 85d:47024

A quantitative Schauder theorem.
Math. Z.185(1984), no. 2, 243-245

As Lady Bracknell might have said: “To publish two papers on page 243, Mr.
Harte, may be regarded as misfortune; to review both as number 47024 looks
like carelessness”!

Would any reader care to estimate the odds?
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" International Mathematical Olympiad

The Minister for Education has approved the travel grant to send an Irish
team, for the first time, to participate in the Imternational Mathematical
Olympiad in Australia in July.

Following an analysis of the Intermediate Certificate Examination and the
Irish National Mathematics Contest held in the last two years, invitations
were issued in December 1987 to about 300 pre-Leaving students to present
themselves for preliminary assessment for the six-member team that will rep-
resent Ireland. After a series of tests, this number has been reduced and about
50 of them—drawn from about thirty different schools—have been identified
as having outstanding mathematical problem-solving ability. These talented
students are receiving special training in UCD, UCC, MICE and UCG under
the direction of Tom Laffey, Finbarr Holland, Pat O’Sullivan and Ted Hurley,
respectively.

These training sessions have generated a lot of interest amongst teachers
and students alike and all those who have taken part have found it a rewarding
experience. Special topics suggested by previous IMO problems have been
covered at the sessions, and so far Modular Arithmetic, Combinatorics and a
little Geometry have been discussed at some or all of the centres. Students’
understanding of the material is being carefully monitored and we await with
interest the results of this year’s INMC and IIMC. We should be in a position
after these contests to nominate the likely team members. Our intention is
then to provide these with an intensive week’s training to build up team morale
and to fine-tune them in preparation for Australia.

Anyone who would like to assist at the training sessions is invited to contact
the centre nearest to him/her. We would especially like to hear from people
with expertise in Trigonometry, Solid Geometry, Combinatorics and Graph
Theory and people who enjoy solving or creating problems. Especially in the
latter case, we invite people to send in their favourite elementary problems.

One beneficial side-effect of this undertaking has been the strengthening
of relations with mathematics teachers. It is hoped that the pupils will be
encouraged to keep up their interest in mathematics, even if they do not get
on the team.

NEWS 11

EUROMATH

The Integrated Database And
Communications System For
European Mathematicians

The objective of EUROMATH is to improve the research environment for Eu-
ropean mathematicians with the aid of modern information technology. By
establishing an integrated information retrieval and communication system as
well as a technical word processing standard, it will strive to stimulate the
research potential within mathematics in Europe, increase the availability of
mathematical research and create an environment which will encourage math-
ematicians towards increased collaboration through effective communication.

The first phase of the EUROMATH project will produce guidelines for the
provision of the following inter-related facilities:

e Information Retrieval: Access to various directories, to (reviews of) pub-
lished Literature, to other databases as well as drafts and notes of indi-
vidual mathematicians.

o Inter-personal Communication: Provision of suitable electronic mail and
electronic conferencing facilities.

e Document Preparation and Delivery: The establishment of a European
standard for mathematical communication embracing the main activities
of entering, editing, transmitting, receiving and printing mathematical
documents.

Traditionally, mathematicians have relied on computers mainly for such spe-
cific tasks as scientific computation and symbolic manipulation. A goal of
EUROMATH is to expand computer usage by enabling easy access to modern
communication facilities. Its basic concept is however equally applicable to
other scientific disciplines. The success of EUROMATH could inspire others
to see the benefits of a modern, full-scale solution to the communication needs
of a scientific community.

The CEC project EUROMATH (The Integrated Database and Communi-
cations System for European Mathematicians), is a collaborative effort link-
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ing CWI (Amsterdam), DDC (Copenhagen) and NIHE (Dublin) in a tech-

nical partnership under the management team of CRC (Dublin) and EMT

(European Mathematical Trust), to which the Irish Mathematical Society is
affiliated. The NIHE (Dublin) Manager is:

Dr. Joha Carroll,
School of Mathematical Sciences,
NIHE,
Dublin 9, Ireland.
EARN/BITNET: CARROLLJ@VAX2.NIHED.IE

IRISH MATHEMATICAL SOCIETY

Ordinary Membership

The subscription for Ordinary Membership for the session 1987/88 is £5.
Payment is now overdue and should be forwarded to the Treasurer without
further delay.

Institutional Membership

Institutional Membership of the Irish Mathematical Society is available
for the session 1987/88 for a subscription of £35. The support of its
Institutional Members is of great bemefit to the Society. Institutional
Members receive two copies of the Bulletin, and may nominate up to five
students for free membership.

Reciprocity Membership

Members of the Irish Mathematics Teachers Association and of the Amer-
ican Mathematical Society are entitled to reciprocity membership of the
Irish Mathematical Society at special rates. Further details may be ob-
tained from the Treasurer, Dr. G. Enright, at the following address:

Department of Mathematics
Mary Immaculate College of Education
Limerick

LETTERS

Why People Should Be Paid To Do
Research In Mathematics

Dear Editor,

Brendan McCann’s question: “Should people be Paid to Do Research in
Mathematics?” (Issue 19) is fair, and one which a mathematician ought to
ponder. I hope you see fit to let me share some of my thoughts about it.
In discussing any question beginning with “should”, it is sure that varying
ethical outlooks will produce different conclusions.

To begin with, I do not accept it as given that “technology has outstripped
man’s needs.” In fact McCann refutes this in the same paragraph when he
states that “over half the world’s adults are illiterate.” Perhaps he does not
view this as a problem to which technology can contribute. But I do. In fact, I
take it as given that technology has contributed more to the human condition
including human rights than any philosophical or political movement. While
it is true that Mr. McCann and I are receiving more material comforts than
we really need, it does not follow that everyone is. The solution to this mald-
istribution is (A) more technology and (B) more generosity. And it seems to
me that (A) is the best way to (B). ‘

The assertion “There is no reason to suppose that mankind will perish
without further mathematical research.” is a gem. You can replace “further
mathematical research” with so many things: art, journalism, rock and roll,
Guinness, medicine even. It seems to me that bare survival is not the issue
here. Nor is the potential contributions of mathematics to technology, despite
my technophile assertions above. In the sequel I shall argue as follows: (1) all
human creativity including mathematical creativity should be supported by
society; (2) the scheme by which mathematical creativity is presently rewarded
is better than that by which most other creativity is rewarded; (3) there are
practical benefits to societies which adequately reward mathematical creativ-
ity besides the eventual application of mathematical theory to technology.

13
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There is every reason to suppose that humanity will cease to be humanity
without further creativity in literature, art, philosophy, athletics and mathe-
matics. Creativity must be a defining factor of human culture. My definition
of creativity is as broad as possible including motion picture actors and direc-
tors amateur and professional athletes, billiard and chess players, musicians,
circus performers etc. All of these persons do their bit with greater or less
proficiency, and seek a reward for it. At times the reward is given in a most
indirect way. For example, outstanding college wrestlers, for whom there are
few professional athletic opportunities after graduation, sometimes receive
high paying jobs in sales and public relations from firms which feel that their
customers have heard of these former champions and would like to spend time
with them.

We all know the scheme by which creativity in mathematics is rewarded,
and I shall not dwell on it. Mathematicians are hired as professors, and their
teaching load is reduced to allow time for research. Better research credentials
lead to better positions and earlier promotion.

The first justification for this arrangement has nothing to do with research.
It is this: teaching college level mathematics requires a tremendous prepara-
tion and intellectual effort. I claim that teaching calculus for a year requires
the same intellectual effort as trying an involved case at law. A lawyer de-
mands a high fee because of his preparation and effort. A mathematician
demands a smaller fee and an environment in which he can do research. The
value of the mathematician’s teaching justifies his salary and the environment,

The second justification is this: The value of mathematical creativity in the
educational process has long been recognized most visibly in the requirement
of theses and dissertations. It is obvious that the best person to direct research
is someone who does research.

Consider some of the alternatives to the system by which mathematicians
are rewarded. Actors and actresses struggle in poverty until they are rec-
ognized, and then are overcompensated. This appears to be usual in the
performing arts. Most writers are neglected, but the few who appeal to the
public become wealthy. The case of the artist is the least happy. How many
dealers and collectors became rich because of Van Gogh? And what good
did this do Van Gogh? The rewards of a mathematician are most equally
distributed even in comparison with practioners of other sciences.

The support of mathematicians by royalty is a historical fact. The monarch
had various motivations for doing this besides help wih infrequent technical
matters; namely, to ornament his court, to prove his nation was more civilized

15

Letters

or just as civilized as another. The public relations value of mathematics sf.ill
: :exists, and it works at many levels. If a state university boasts a productive

mathematics department, it helps to attract industry. Does it hel.p very much?
Probably not; but how much is one half of one percent of fifty billion dollars?

* Moreover, the reputation of the mathematics department helps the graduates

of the university when they seek employment. The added cost per student

of a research oriented department versus a department of exploited teachers

probably amounts to half of what the student spends on preparing his re-

_sume. And it probably makes twice the impression on the average prospective

employer. ' .
13I‘he much repeated argument that the most unlikely mathematical theory

has resulted in advances in applied science is probably tr}le e'nough; but P’m
not fond of it. In the first place most mathematical f:ontnbut.xox'ls to technol-
ogy have been by mathematicians who have been d?rectly I.not.lva,ted by the
technology. In the second place, a lot of mathematical aplications turn ou.t
to be of this sort: some economist or physicist comes upon some mathemati-

~ cal theory which appeals to him; he continues to expand t-he theory and but.
 now calls it mathematical economics or mathematical physics. It seems to me

that the other reasons I have cited demonstrate that the answer to McCann’s
question is “Yes.”

- William H. Ruckle
106 Whippoorwill Drive
Semeca. SC 29678, USA.




ARTICLES

Minimal Fitting Classes

Brendan McCann

This short survey provides an introduction to a developing area of fin
soluble group theory. In it all groups considered will be taken to be finite a1
soluble, though some of the ideas discussed will have a more general validit
Background to the group theory involved can be found in [8]. We begin wi
the definition of a Fitting Class:

Definition 1 A Fitting Class 7 is a set of groups such that

(a) if G belongs to 7 then so does every isomorphic copy of G — this is ¢
“class” property of 7; :

(b) N4 G € 7 then N € 7 ie., 7 is closed with respect to norm
subgroups;

(c) G = N1 N,, where Ny and N, are normal subgroups of G and belong|
7, then G € 7 i.e., 7 is closed with respect to “normal products”;

(d) 7 is non-empty — so all groups of order one are in 7.

Some examples of Fitting Classes are: §, the class of all p-groups for tl
prime p; Sy the class of all (soluble) 7-groups, where 7 is a collection of prime
Ny, the class of all nilpotent m-groups. ‘

In order to provide a group-theoretic motivation for the study of Fitti
Classes we mention briefly a result of Fischer, Gaschiitz and Hartley [5]:

Theorem If G is a finite soluble group and 7 is a Fitting Class, then the
exists a unique conjugacy class of F-injectors in G.

An F-injector is a subgroup, I, of G such that if N is subnormal in G (i
if there exists a finite chain N <t Ny <l --- <4 Ny = G) then IN N is F-maxim
in N, that is IN N € ¥ and I N N is contained in no other subgroup of
which is in 7.

16
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For example, the Sp-injectors of G are the Sylow p-subgroups of G, and
the Hall x-subgroups are the S;-injectors.

Rather than pursue this structure-theoretic aspect of soluble group the-
ory, we turn to the more mundane question of determining the smallest (i.e.
minimal) Fitting Class containing some given group G. In most cases this
is complicated and requires extensive knowledge about automorphism groups
and normal products.

Definition 2 The Fitting class Fit(G) is defined by
Fit(G) = [ |{7 : 7a Fitting Class containingG}

Fit(G) can be considered as the Fitting Class generated by G, since it
is a Fitting Class which contains G and is contained in every Fitting Class
of which G is an element. If G is non-trivial Fit(G) will contain all finite
direct products of copies of G and its normal subgroups. However, there are
also normal products which are not direct products - and this fact makes the
construction of Fitting Classes in general very difficult: For example the group
S3 X Cy (S3 is the symmetric group on three symbols, Cz a cyclic group of order
2) is the normal (but not direct) product of two subgroups isomorphic to Ss.
Thus by 1(c) Ss x C; € Fit(Ss) and then by 1(b) we also have C; € Fit(Ss).
So there are 2-groups in Fit(Ss), even though Ss itself has no (sub)normal
2-subgroups.

There is one case where minimal Fitting Classes have been determined,
namely: if P is a non-trivial p-group then Fit(P) = S, (see [8] for a sketch
of the proof); and, more generally, if H is nilpotent and |H| = P{*...P*
where P; is a prime and a; #0, ¢=1,...,k, then

Fit(H) = Nz
where

ﬂ"—"{Pl,'--,Pk} .

By considering non-nilpotent soluble groups, we come to the idea of Fitting
length:

Definition 8 The Fitting length (also known as nilpotent length) of the sol-
uble group G is the smallest number k such that there exists a series:
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1=Ng<dN; ANyt AN =G,
with N;/N;_; nilpotent (for s > 1) and N; < G (for each ¢).

Thus nilpotent groups are of Fitting length one, — the terms “metanilpo-
tent” and “nilpotent by nilpotent” are used for fitting length two. The task
of determining minimal metanilpotent Fitting Classes has turned out to be
very complicated indeed. We return to the group Sj, which is the “smallest”
metanilpotent group. We already have C; € Fit(S;) and so:

Fit(C;) = $; C Fit(Ss)

Furthermore, from Hawkes 6], we have that if @ = PQ, P4 G, P an
elementary abelian 3-group, @ a 2-group, then G € Fit(5,).

However Fit(Ss) is not the class of all “3 by 2” groups (that is {2, 3}-groups
with normal Sylow 3-groups), since Camina [2] has shown: D;s ¢ Fit(Ss) -
where Djg, the dihedral group of order 18, is “the” non-trivial extension of
Cg by Cg.

In fact we do not know at present what groups Fit(Ss) consists of, and
the same applies to the Fitting classes generated by most other “well-known”
small soluble groups, such as e.g. A4, the alternating group on four symbols,
or Dl4-

Some progress has been made with metanilpotent groups whose structures
are more complicated than those of S5 or A4. By specifying a suitable group,
H, say, of the form H = AB, A<t H, A a p-group of nilpotent class 2 or
greater, B a g-group p # ¢, and by placing suitable restrictions on the g-
automorphisms of H, constructions of Hawkes [6] and Cossey [3] will define a
Fitting Class containing H, thus narrowing the range of groups which might
possibly be in Fit(H). Indeed, Brison, using the Hawkes construction, has in
[1] been able to give an example of a minimal Fitting class for a metanilpotent
group. It must be noted, however, that these are rather isolated examples
and that much awaits discovery in the area of minimal metanilpotent Fitting
Classes.

Given that Fitting Classes of Fitting length three or more must contain
metanilpotent groups, the determination of minimal Fitting classes for groups
of Fitting length three or more will have to wait until the metanilpotent ques-
tion has been resolved. However, some progress has been made on the follow-
ing less general question:

Minimal Fitiing Classes 19

If G, and G are both groups of Fitting length k, do either of the relations:
G, € Fit(Gz) or Go € Fit(Gl)

| 7

hOkin the case of Fitting length three, this question can be resolved in cer-
ain cases by using constructions due to Dark [4] and McCann [7,8]. These
-onstructions take a single group G, which satisfies suitable restrictions about
normal structure and its automorphism group, and derive a Fitting Class from

it which is, like those of Hawkes, “near to being” Fit(G). The fact that G has
;Fitting length three is exploited in the proof in each case.

In order to state one of the nicer results we recall the definition of the

Frattini subgroup:

The Frattini subgroup, ®(G), of G is the intersection of all maximal sub-
groups of G. ®(G) can also be characterized in the following way:

" ®(G) consists of those elements which can be discarded from any set of
generators so that the reduced set gtill generates G. Now let G be a group
such that

G/®2(0:(G)) = S,

~ where O3(G) is the product of all normal 2-subgroups of G. Then either
G = 8 or G ¢ Fit(Sy) and S, ¢ Fit(G). (The constructions used are

essentially those of (8]).

Apart from direct applications of results about Fitting classes of Fitting

length three or less, little is known about minimal Fitting classes of groups of

TFitting length four or greater. It is possible that, due to their more compli-
cated nilpotency structure, different problems will arise in the determination

of such classes, but at present one can only speculate (no doubt vainly) as to

what future research will reveal.
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Asymmetric Cryptography
Patrick Fitzpatrick

1 Introduction

In recent years a great deal of attention has been focussed internationally on
the twin problems of security and authentication in the use of electronic com-

‘munication systems for a wide variety of transactions including information

storage and retrieval, banking and financial transactions and the transfer of le-
gal documents (contracts, invoices etc.). These problems may be summarised
as follows:

(a) security — the message must not be capable of imterpretation or alteration
in any way by an unauthorised person;

(b) authentication — the identities of the parties involved in the communica~
tion must be reliably established in such a way that neither can later repudiate
any part of the transaction.

The need for cryptographic systems is thus placed firmly in the public
domain and is no longer the sole preserve of government, diplomatic and
military establishments.

The classical solution to problem (a) is the encryption of messages using
a secret key known only to the transmitter and receiver. The key itself must
be exchanged by some reliable method — a trusted courier, for instance.
However, as the number of participants grows (consider, for example, the
national and international branch network of a large banking corporation)
the problem of distribution end secure storage of keys becomes exceedingly
difficult. Moreover, the classical method provides no solution whatever to
problem (b).

Since the publication of Diffie and Hellman’s fundamental paper [8], it
has widely been recognised that asymmetric (or two-key or public-key) cryp-
tosymtems represent sn theory the best approach towards a solution of these
problems. In practice there are few realistic working models — proposed
implementatins have either been shown to be insecure or too costly for ap-
plication in general. As a consequence, a good deal of research has also been
devoted to other methods (such as Siegenthaler’s work on stream ciphers [40

41]) and, in addition, attempts have been made to apply asymmetric tech-

21
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niques to restricted types of transaction. i i j
Tajor esearch ofot by the B Fog This latter area is t.he} subject of a

The purpose of this article is to review progress in asymmetric cryptogra-
phy, concentrating on the two principal proposed schemes — knapsack methods
and RSA methods. These topics were the subject of M.Sc. project work carried
out at University College, Cork in 1987 and I am grateful to my students Ian
Ho!land, Harry Lande and Michelle Skiney for their endeavours, the results of
which can be found in [14], [18] and [44] respectively. This survey owes much
to their diligence.

Many readers will also be familiar with the central ideas of asymmetric
cryptography. Simmons’ Intelligencer article [43] is an excellent introduction
(see also Gardner [9]), while Denning [7], DeMillo [6] and Simmons [42] all
provide more comprehensive treatments of cryptography and data securit
.\g’e conclude this introduction with a brief summary of the essence of the::;
ideas. :

Both parties to a communication have an encryption function E and a
decryption function D with the following properties:

(i) D(E(M)) = M for every valid message M;
(i) E and D are easy to compute;

(iii) it is computationally infeasible to determine D from a knowledge of E
A fourth property which may or may not be present is
(iv) E(D(M)) = M for every valid message M.

The key distribution problem is solved when each user places his encryption
function in a public file. When user A wishes to communicate “plaintextl;)” M
to user B he transmits the “ciphertext” Ejg (M) using B's public encryption
function Ep. On receipt, B calculates Dy (Ep (M )) = M using his gezret)
decryption function Dp. (In practice the actual algorithms used will be known
to all‘ parties — including potential intruders. The unknown part is the en-
cryptl?n/decryption key. Here, and throughout the Ppaper we are referring to
“algorithm plus key” as the “encryption /decryption function” .) The securst
.problem is solved provided an intruder can neither interpret Eg (M) — whicli/
is the classical requirement — nor tamper with it. Property (iii) is crucial
in this regard. Finally, the authentication problem is solved in the presence
of property (iv), by the following protocol: A sends both Ep(M) and Eg(S)
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where S = Da(M); on receipt B computes Dp (Ep(M)) = M and compares
it with EA(DB(EB(S’))) = EA(S) = EA(DA(M)) = M using A’s public en-
cryption function E,. If these are identical B is assured not only that A is

the transmitter (since only A knows D4) but also that the message sent was
fact M. Thus S is A’s (message dependent) signature appended to the par-
ticular plaintext M, so it is ensured that A cannot later deny having sent the
message or repudiate any of its content. Acknowledgement by B and message
confirmation is required also and it is clear how an independent third party
uch as a court of law) can establish the facts of transmission and reception
gether with the content of the message, in much the same way as is currently
e case with paper transactions.

The existence or otherwise of functions satisfying (i) — (iii) or (iv) has
t yet been established. Attempts so far have concentrated on the idea
of putting some well-known hard problem between knowledge of E and D in
ch a way that some additional information will allow (computationally) easy
cess from one to the other. Thus the encryption function is regarded as a
“sne-way” function, that is, a function F for which f(z) is easy to compute for
every z, but for which, given y, it is computationally infeasible to determine
z such that f(z) = y without some additional “rapdoor” information. The
o best-known attempts have tried respectively to put the knapsack problem
d the integer factorisation problem between E and D. We take these up in

turn.

2 Knapsack Methods

_The general knapsack problem is as follows. Given a set of n postive integer
‘weights a = (a1,...,08,) determine whether a weight N can be obtained by
‘adding together a subset of the given weights, that is, whether there exists a
‘binary vector with n components m = (my,...,m,) such that N =m.a. It is
well-known (see [10], for example) such that in this generality KNAPSACK is
in the class NP — a proposed solution m can be checked in polynomial time,
_but no polynomial time algorithm is known for determining a solution m from
and N. Moreover, KNAPSACK is NP-complete so in a semse it is among
e most difficult of NP problems. However, some instances of KNAPSACK
e easy to solve. In particular, if the a; form a superincreasing sequence:
k41 > Doj_paq @ for k= 1,...,n —1 this is clearly the case, since then

» imn‘-'—'lifandonlyifNZGn and, for L < k < n—1, m = 1 if and only if
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-5 ‘a; > Ok
N T%aJ:rki;iln:.l%Jl‘:;a;sazk cryptosystem proposed by Merkle and Hellman (28}

s gcheme. Select a superincreasing sequence a’' and two pos-
;ﬁfrz ti}x::efgo:lr:w}l?l: gQ such that P is inyertible .modulo Q 'and E?_l a;' < Q
Define a; = a;'P (mod Q) for 311 j. Now given the (bma.ry enc?ded) mes.
sage block m of length 7, transmit N = m.a. Here a is the pub}lc-key pa.rt
of the system. Only the receiver, who knows the secret trapdoor mforma.tlo%

(P, Q), can compute
N' = PN = P()_ mjay)
= p‘l(zmja',-)P = Zm,-a',- (mod Q)

. . ' — S mya';. This is easily solved since a' is su.
a:g,f:::;g ‘ Jthth:hz thiszalg;ritjhm can be used for either security o
guthenticatig;l but not both because property (iv) does mot hold — many
plaintexts M are not valid ciphertexts so E(M) cannot be'calculated.

In 1980, Shamir and Zippel [39] showed that the basic Merkle-Hellm :
scheme — l;enceforth referred to as MH — could be broken “‘almost certfnnly,
if the modulus were known to the crypt,ana’lyst.. Lager Shamir ’[.37] descnbet! a
method by which M H could be broken “with .hlgh probability” in polynomial
time. The essential point in his argument is that there are usually m:«’m
so-called trapdoor pairs (Pos Qo) any one of which has thta property .that a
(mod Qo) is superincreasing and gives the .correct decryption f’f the.c1phert.e.
He reduces the search for one of these pairs to a..system of linear mequaht. ;
in several variables — arguing that four suffice in almost.: all cases — whxch:;

teger programming algorithm [21].

ing Lenstra’s in : : .
he t&zzkile;sdugelinan also suggest in [28] that iterating their basic scheme

could lead to improved gecurity. However, building on Sham?r’s work, Adlgf%
man [1] (see also [3]) was able to dem(?nstrate how to break the iterated system.
He uses the “attice reduction” algont.hm of Lenstra, Lenstra a..nd Lovasz [22]
to convert a system of nonlinear equations — under some plausible hypothese%
— to a system of linear inequalities and then uses Shamlf"s approach. He doegg
not prove rigorously that his met}fod works anc.l ext.enswe com.p.utef ca.lculai
tions were required to verify that it does so “with high probability in almos§
all cases” (see [3] for references 2

nd further details).
Several other varian

selves suggest a multiplicative versio

n as follows:

ts of MH are known. Merkle and Hellman [28] them%
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Choose n relatively prime numbers by,...,b,, a prime p such that p >
bibs b, and a primitive root ¢ modulo p. Determine a; such that b = %
(mod p) and use a = (@1,...,an) as the public key, keeping ¢ and p secret.
To transmit the (binary encoded) message m = (my,..., my) calculate k =
E;.‘___l mja; and send k. The receiver, knowing ¢ and p, can find m = ck
(mod p) and since m = ¢* = [[c™i% = J]b]* (modp) and p > [I&;
then m = [[ 67"/ so m; = 1 if and only if b; | m. The intruder must either
find the m; knowing only k and a or else find ¢ and p. The latter brings in
the well-known hard problem of computing logarithms in a finite field (Z,).
This scheme was successfully attacked by Odlysko [30] under the assumption
that some of the b; were known (indeed practical constraints would probably
require them to be small — the first few primes, for example), and later by
Adleman in more generality (see [3]).

It was clear from the start that a possible source of crytographic weakness
in MH lay in the fact that the early knapsack weights in the superincreas-
ing sequence would be significantly shorter (in binary length) then the later
ones. Graham (see Lempel [20]) and Shamir [39] independently described
another variant of MH in which they disguised the superincreasing structure
by “padding” the weights before the modular multiplication so that they all
had approximately the same length. This Graham-Shamir scheme has been
attacked in certain cases — Brickell and Simmons [3] give the details — using
methods similar to those of Adleman. incidentally, at the same time Odlysko
[30] successfully attacked the method outlined by Shamir [36] for using the
knapsack scheme for signatures instead of security.

In more recent developments Shamir [38] (see also Willett [46]) has de-
scribed an iterated knapsack cryptosystem which starts from an arbitrary
initial knapsack and thus avoids introducing the superincreasing structure.
Also, Goodman and McAuley [13] have developed a knapsack based method
which brings in the integer factorisation problem. To our knowledge neither
of these methods has been cryptanalysed.

3 RSA Methods

The original RSA system (Rivest, Shamir and Adleman [34]} is probably the
best known feature of the asymmetric cryptography literature. Given n = pg

. 'where p and q are prime the Euler phi function of n is o(n)=(p—-1)(g—1).

If (e, o(rn)) = 1 and d is chosen so that ed = 1 (mod p(n)) then a message
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m (an integer between 0 and n — 1) can be encrypted as ¢ = m® (mod n)
and decryption is described by the congruence ¢® = m®¢ = mitre(n) = m

(mod n) since m**(") = 1 (mod n) for any k. The public key is (e,n) and pomial function ge(z) = z° to permute the elements of the ring Z, (where

the private key is d. (It is clear that the selection of ¢, d works when (m,n) = 1

and easy to see that the equations hold also when p or ¢ — but not both, of

course — divides m.)

The essential feature of the method is that there is8 no known way using
present day technology of factoring integers with about 200 decimal digits

in any reasonable time. Recent work at the Sandia Laboratories [5] using a

CRAY I computer is based on the “quadratic sieve” algorithm of Pomerance
[32] and focuses on numbers with between 65 and 100 digits. Other fast
factoring algorithms are due to Morrison-Brillhart [29] and Schroeppel (see
[35]) with running times for factoring a 150-digit number of about 9 x 10°

. a,3) = @,z) = o a,z) and Lausch et al [19] prove that
years and 2 X 102 years respectively. Since no-one has yet been able to ind 2 (9 © 90)(3,2) = guvla,2) = (g0 9.)(9, ) [19] p

way of breaking the RSA scheme which does not involve factoring the modulus

(or determining ¢(n) — it is easy to show this amounts to the same thing), the 1 (mod (p? — 1)(¢? — 1)) which means that in using these polynomials for

security is, at present therefore, very high and could be increased if necessary cryptosystems the inherent difficulty of factoring n is again brought into the

s%mply by incre.asing the leI}gtll.s of p and g (but see the' conf:lusion). Also calculation of the inverse v.
since the RSA is commutative in the sense of property (iv), it can be used

for a,uthentication.as. we]'l as security. On the other hand, the operation of eral variables (see [24]) or rational functions (Rédei [33]) to induce permuta-
mod‘ular. expomentiation is very slow .and leads l-;o a throughput rate for the . tions on &y,. To our knowledge none of these polynomial generalisations of the
data which compares unfavourably with competing methods (such as stream " RSA has actually been analysed as part of a practical cryptosystem.

ciphers or conventional ciphers like the Data Encryption Standard [4]).

As a consequence, the greatest efforts — apart from trying to break the

4 Conclusion
speed of the algorithms used in its initialisation and implemention: random

RSA without factoring the modulus — have gone into trying to improve the

number generation, primality testing, determination of greatest common di-
visor and modular multiplication and exponentiation. The primality test sug-

gested in [34] is the probabilistic one of Solovay and Strassen [45] although
the OSIS report [31] claims that the test given by Knuth [15 p.379] is prov-

ably better. Of course the primes used should in some sense be randomly
chosen — several good pseudo-random number generators are known (see, for
example Golomb [12]), but the latest work [31] suggests using some physi-
cal process (such as heat, white noise or radioactive decay) as a source of
truly random numbers. Finally, algorithms for calculations like the GCD and
modular arithmetic are constantly being refined and improved (Blakley [2],

for instance). Recent work by Kung and his associates on systolic algorithms -

and the corresponding computer architecture in providing a new and exciting

Asymmetric Cryptography 27
stimulus in this field [16, 17].
In a more general context the RSA may be regarded as using the poly-

(e;p(n)) = 1). Lidl [23] and Lidl and Miiller 24] consider other possible “per-
mautation polynomsals” for use in RSA-type cryptosystems. One such class of

. functions is the set of Dickson polynomials (or Chebyshev polynomials of the

first kind, ) defined by

ef2

ge(a2) =Y - _e_j (e ; ") (—a)z*% (for a = %1)

§=0

(when @ = O we recover the RSA polynomial). In [24], it is shown that

g(a, z) induces permutation of 5, with n = pg and p,q prime if and only if
(e,(p® — 1)(¢® — 1)) = 1. Also, g, is the inverse of g, if and only if uv ==

Further generalisations are possible using (Chebyshev) polynomials in sev-

It is somewhat surprising that only a few proposals have been made for al-
gorithms to implement asymmetric cryptosystems. In fact, apart from those
mentioned above (and various short-lived variations — see, for example [26],
[11]) only ome other has been given, namely, a suggestion by McEliece [27]
(see also [25] p.360) that error-correcting Goppa codes be used — the data is
transmitted with many errors which only the recipient knows how to correct.
In practice the Merke-Hellman scheme has never been used and the Graham-
Shamir system has only been used briefly (by Western Electric), while the
RSA was adopted by several groups and implemented on LSI chips at MIT
(by Rivest et al) and at Sandia National Laboratories. As mentioned in the
introduction the RSA is now the cryptosystem of choice by the European

- working group OSIS in the design of a secure “foken” based payment and
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financial transfer protocol. These implementations represent, however, only
a small minority of the current applications of cryptography. Conventional
cryptosystems such as the Data Encryption Standard or DES [4] are in use to
a much greater extent and this reflects both a lack of confidence in asymmetric
techniques together with the relative inefficiency of the RSA method.

Until now the approach to the design of asymmetric cryptosystems has
been to take some known hard problem and build it into the derivation —
without trapdoor knowledge — of the content of the message and the decryp-
tion function from knowledge of the ciphertext and the encryption function,
Thus solving the hard problem implies breaking the cryptosystem and st u
hoped that the converse is also the case, that is, that the cryptosystem can.
not be broken without solving the hard problem. In no case has this beelﬁ

proved and, of course, as Shamir and others have amply demonstrated, break.

ing the knapsack cryptosystems so far proposed is not equivalent to solving
KNAPSACK in polynomial time.

Thus there remains the underlying doubt as to whether any proposed
scheme is secure and whether it will continue to be so into the future. But, in
addition, there is he even more fundamental question: Do there exist genuine':'
asymmetric cryptographic functions? Simmons [43] calls this “one of the most
important questions in contemporary applied mathematics”.
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Planks’ Constants

S.D. McCartan T.B.M. McMaster

One of the hazards to be faced by the student of general topology is tg
proof of existence of spaces which are Tsx (i.e. completely regular, or 'I‘;
chonoff) but not T, (ie. normal). The “standard example, the Tychonc%
Plank (see [3]), has perhaps an unnecessarily austere public image since j
usual presentation requires familiarity with ordinals which many undergr.
uates have not acquired. We here call attention to an alternative examp
due essentially to Thomas [4], which has no such prerequisite. Assuming g i
elementary understanding of cardinal numbers we go on to show how to exen
the construction to produce a family of non-normal Tychonoff spaces, and
discuss some questions which this extension raises.

Example 1 (The Thomas Plank (see [3]).) Let X and Y be infinite di
crete spaces, where X is uncountable. Form their Alexandroff (“one-pomt"
compactifications A(X) = X U {co} and A(Y) = U{oo}, their product spac
A(X) x A(Y), and its subspace

= (A(X) x A(Y)) \ {(c0, o0)}

(If desired, A(X) may be defined as carrying the Fort topology 7 U (oo
where -y denotes the cofinite topology, and ¢(co) the excuded point topolog?
in which the non-universal open sets are those to which co does not belon
— see [3].) Since A(X) and A(Y) are compact and T3, as may be seen eithe
from the local compactness of X and Y or directly from the definition, so s‘
their product which is thus T, and T} 1 also. Now the subsets

T=Xx{oo}, R={oo}xY

are closed in P. If, however, it were possible to find dispoint open subsefff
G,H of P with T C G and R C H, choose a countably infinite subset Y’ of }
and note that

(i) H would have to contain all but finitely many points on each horlzontai

cross-section X X {y'} of X x Y”, from which it follows that (X x Y) \E
is at most countable, whereas «

32
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(i) G must contain at least onme point (indeed, infinitely many points) on
each vertical cross-section {z} X Y’ of X X Y', and s0o (X x Y') NG is
uncountable.

These observations cannot be reconciled with the disjointness of G and H,
and the contradiction establishes that P is not Tj.

Note that this example could be simplified by taking Y to be countable,
thus rendering the selection of Y’ unnecessary. (Indeed, even further siimpli-
fication can be achieved by abstraction. Begin with an uncountably infinite
set X, let z € X and let Y be a countably infinite subset of S\ {z}. Consider
X with the Fort topology yUe(z), the product space X x X, and its subspace

= (X x X)\{(z,2)}; then T = (X\ {2}) x {2}, R = {2} XY are each closed
in P, and a routine modification of the previous argument will suffice.)

Remarks The source of the contradiction here is the existence of a cardinal
number, in this case Ry, which is less than that of X but exceeds that of
the complement of a “neighbourhood of infinity”. It is easily seen that we
can obtain other examples of non-T, spaces just by replacing ¥o by another
infinite cardinal; further, it will be convenient to allow different cardinals to
be associated with X and with Y. More thought, however, is needed to ensure
that we not not lose the T 3 property in the process, since the demonstration
of this depended on three Tesults which could be described as “cardinality-
sensitive”, namely

(a) A(X) is compact,
(b) the product of two compact spaces is compact,

(c) compact plus T, implies T}.

This is what will occuply most of our attention for the remainder of the present
note.

Definitions Let o denote an infinite cardinal number. A topological space X
is called a-compact (see [1] or, for a more recent reference, [2]) if every open
cover of X has a subcover consisting of fewer than o sets. Thus, for example,
Ro-compactness is just (classical) compactness, and Rj-compactness is the
Lindelof property. Given any space X, choose an object co which does not
belong to X and denote by Ao{X) the topological space defined on X U {co}

by declaring open
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(i) the open subsets of the space X,
(ii) the complements in X U {co} of the a-compact closed subsets of X, and

(iii) X U {oo} itself.

The obvious modifications of the Alexandroff argument will sow that A,(X) )
is a a-compact and contains X as a subspace, and that X is dense in 4, (xy
precisely when X is not a-compact.

Lemma 1 Suppose that X is a discrete space. Then Aq(X) is T3y for an
finite cardinal a.

Proof It is certainly T} since singletons are a-compact. Now if F is a give
closed subsety of A,(X) and p ¢ F, we consider two cases:

(a) p=co. Define f: Ao(X) — [0,1] by f(y) =1ify¢ F, fly) =0ifyEF
(b) p# oo. Define f : Aa(X) —[0,1] by f(p) =1, f(y) =0for all y # p.

In either case f is constant on a neighbourhood of co and thus continuous
there. Every other point of Aq(X) is isolated, so continuity elsewhere is
automatic.

Example 2 Choose any two infinite cardinal numbers  and f. Denote b
& the supremum of all cardinals less than o, so that if o has an immedia
predecessor than & is the predecessor, while if not we have & = a. Choo
sets X and Y whose cardinalities satisfy

card(X) > a, card(X)>p, card(Y)>5.
Give X and Y their discrete topologies. By the lemma, the subspace

= (Aa(X) x Ap(¥)) \ (00, )

that

B.a which is less than card(X ), whereas

(i) G must contain at least one point on each vertical cross-section of

X x Y’, so the cardinality of (X X Y') NG is at least card(X).
Thus the same contradiction as before has arisen, and P cannot be Ty.

ﬁ; sets is open is called a-saturated (see [1] again).
- saturated, a discrete space is a-saturated for every cardinal number @, and

of the product space Aalpha(X) x Ap(Y) is Tyy. Now if T,R,G and H are
as in Example 1, choose a subset Y' of YV’ havmg cardinality £ and observe; |
~ result:

(i) the relative complement of H in each horizontal cross-section of X X Y*
has cardinality at most &, and so the cardinality of (X xY’)\ H cannot exceedg
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 Remarks Since 8 = Ro, the special casea = 8 = Ro coincides with Example
1. If instead we choose a = R; (noting that 8; = Rg) and f = Ry, we
obtain a construct whose behaviour closely resembles that of the Tychonoff

ﬁ' Plank. What we have obtained, then, is a family of “planks”, parameterized

so to speak by the two cardinals o and § which we regard as the “constants”
describing a particular plank. The authors would at this point like to apologise
for the excruciating pun in the title of this paper.

It is interesting to note what happens when one attempts to establish
the T31 property (for Example 2) not directly, as in the lemma but by re-
examining the points (a), (b) and (c) in the remarks following Example 1. Now
Aq(X) is a-compact, but it is not in general true that a product of a-compact
spaces is a-compact (see [3] for a simple example — Sorgenfrey’s half-open
square topology on a real plane—of a Lindelof space X such that X x X
is not Lindeldf) nor that an a-compact T space is Ty (for instance, see [3]

again for the relatively prime integer topology on the positive integers). There
- are, however, special circumstances in which this line of argument recovers its

validity, as we shall now see.

~ Definitions (i) An infinite cardinal number a is called addstively snaccessible

if it cannot be expressed as the sum of a lesser number of smaller cardinals:

~ that is, if it is impossible to obtain a set of cardinality o by forming the

union of a family of subsets, where cach subset and the index set of the family
have cardinality less than o. It is easily seen that a cardinal which has an
immediate predecessor is additively inaccessible, but the problem of existence
of other examples would lead us too deeply into axiomatic set theory to be

~ appropriately discussed in this note.

(ii) A topological space in which each intersection of fewer than o open
Thus every space is Ng-

it is readily checked that, for discrete X, A, (X) is a-saturated provided that
a is additively inaccessible; indeed, we can as readily obtain a more general

Proposition 1 Let o be an additively inaccessible cardinal number; then

(i) the union of fewer than o subsets of a space X, each of which is a-compact
is a-compact;

(ii) if X is a-saturated then so is A,(X).
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t € I}, where card(]) < a, is a family of a-compact setsi
: j € J} of open sets, they

15 € J(i)}

Proof (1) If {C’

whose union is contained in that of a family {G;

for each i in I there is a subset J(i) of J such that C; C U{G;

and ca.fd(J(i)) < a. SoY{Ci :+ e I} C U{G; :
= |J{J (%) : © € I} has cardinality less than a.

(11) Consider z € G = [{G: :

open neighbourhood (in X) of z and is contained in G. If z = oo then X \ ol
is a-compact by (i), and closed in X because X is c-saturated. Thus G is
neighbourhood of each of its elements, and must be open.

Proposition 2 Let X and Y be a-saturated and a-compact, where o is ad
ditively inaccessible. Then X X Y is a-compact. .

Proof Given an open covering {Gg: f € B} of X x Y, let y be any element
open J(z,y) € Y such that

(z,9) € H(z,y) x J(2,9) C Gp(a,y) -

denotes the (open) intersection of the J(z,y) which correspond to these, we
for which card(By) <a.
that card(Y’') <aand Y CU{Jy: v € Y'} Then
XxY=U{XxJ,,:y€Y'}§U{Gp:ﬂEU{By:er’}}
where [J{B, : y € Y’} has cardinality less than , as required.

Proposition 8 If X and Y are a-saturated topological spaces, then so i
XxY.

The proof is elementary.

Proposition 4 An a-compact, a-saturated, T, topological space is Tj.

j € J'} where the se;

i € I} where card(I) < « and each G; i ls
open in A,(X), X being a-saturated. If z € X then ({G; N X :d€ [} is

of Y. For each z in X we can choose f(z,y) in B, open H(z,y) C X andi

Now fewer than a of the sets H(z,y) will suffice to cover X; and if J'::

see that X X J, is covered by a subfamily {Gs: § € By} of the given cove

Now the sets Jy, for y in Y, cover Y; so there is a subset Y’ of ¥’ such‘

The proof is the obvious modification of that of the classical case a = R
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Remarks These four propositions constitute an alternative proof that the
space Aq(X) x Ap(Y) in Example 2 is Ty (and therefore that P is T33), but
only in the case where a and § are additively inaccessible and equal. Thus
they add nothing to our understanding of Example 2, and are included here
partly for their intrinsic interest and partly to point out how a relatively
innocuous-looking topological question can quickly lead to areas of set theory
in which Zermelo-Fraenkel will not suffice.
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UCATION The Revision

At the outset the Department of Education, adopting an earlier proposal from

he IMTA, announced that there would be 3 Junior Cycle Syllabi to cater
or a wide spread of ability. Until the exams are taken in 1990 nobody can
ay what percentages of pupils will follow each course to the bitter end but
reasonable estimate would be A: 30%, B: 50%and C: 20% at most. The
_ and B-courses are modifications of the Higher and Lower Intermediate
ertificate courses respectively, and the C—course is a new course for the very

eak student.
nedinSeptember 1987, Mathematics teach-  Educational cutbacks will, however, limit options, especially in smaller
When second level schools reope d teaching the three new Junior Cycle gchools. Also, parents and pupils may be unwilling to accept that the C-
ers faced the task of interpreting &% . B-Course and C-Course) drawn up Course is where their best chances lie. Numbers following the C—~Course may
A-Coursty tee over the years 1982-84. To :e falsely low. That would be a pity. There is enthusiasm in the IMTA for

Maths Syllabi (hereafter tl:e labus Commit ;
by the Dept. of Education’s SlZliz;l ing houses produced 6 or 7 competing text- the C—Course which, it is felt, is custom-built, not merely a cut-down model
ublis

help the teachers along, the P aminations Board attempted to produce a of the older syllabi.

books and the Curriculum and BX have not been published. One feature of The new A— and B- courses by contrast are in the main exactly that —cut-

set of sample papers. These P apel: ice questions—has probably been lost in down versions of previous Higher and Lower syllabi. The revision of the syllabi

them—the exclusion of multiple-cho¥ was carried out by reading through the topics listed in the Rialacha agus Clar
the political turmoil of the CEB era. and deciding which ones stayed in and which did not! In a small number
f places new material was added. Did this result in a shortened A-Course,

one of the objectives of the revision? Yes, but it is arguable whether or not

-+ 1ad stood since 1973) came from t was shortened enough. The main reduction to;ok place in Geometry: the

old syllabi (W}“:h had stoo numbl:ar oi('i proofs was cut from 29 to 19. But Statistics has been substantially

epartment: . . . engthened.
lileat];) tlll)e old Intf!rmedlate Sefilﬁcate nghe:v‘;:u::e In the B-Course more time will be given to numerical work with financial
Geometry Was offputting, thaf» the Ow: courseb g t'a(.')l bills of all kinds, with train timetables and distance charts. Here the number

was foo long, that O dent success rate 00 high, and that a substantial ¢y ons has gone from 15 to 11 but the number of proofs (including

hard, the below-40% stu © oupils were not being catered for l.)y the syalla.b:us; construction proofs) from 18 to nil!

percentage of Lower Cou's agicians who felt that f;he Intermediate and Lea.v'mg On the C-Course, Geometry stops at constructing triangles and Algebra
2. fr?m third leve.l Mather: roducing students w1t.‘.h a good grasp of the basics, at 3z + 4 = 19 although powers are included. But all the traditional topics
Certificate syllabi were 1C g icular, was unsatxsfa:ctory; . are touched on except trigonometry.

And that the Geometry, 2 P dustrial/commercial interests who ?Iere calling

3. from a certain number of 1n in alternative syllabi had taken

. . Ppilot schemes It . . .
for “relevance” in the ;yllall::d fl’lloonoticeable influence on the revision). Proofpro of
place. (In the event, ¢ ese |

MATHEMATICAL ED
ATIOR 7

The New gchool Syllabi: How New?

Michael Brennal

Background

Pressure for revising the
three sources external t0 b
1. from teachers who felt b

Maths has abeen proofproofed for the majority of pupils by these changes—
 unless one considers the solutions to questions such as the following as proofs:
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(1) Evaluate z° +y° +2%

—2°

(2) Show that the triangle with vertices a(1,2), b(5, 2), ¢(3,1) is isoscele
(Distance Formula supplied).

These appeared on one draft of a B-Course sample paper.
Tt is right that we should mark the departure of Geometry proofs by recall
ing why Geometry has become so unpopular with teachers and pupils alike
The non-intuitive nature of the old Geometry lies at the heart of it. Equipo}
lence, which students meet soon after finding their way along the corridors 05
their post-Primary school, combined with seemingly irrelevant proofs a.bolf’
the image of a line under a central symmetry ... , together with the inability
of teachers to think up unseen problems which were assailable by isometries
did to death the cause of Geometry proofs, or indeed of any proofs, for up
70% of our pupils, between 1973 and 1987. '
In the new A—Course the treatment of Geometry reverts to a Hall ang
Stevens type, with congruence of triangles prominent. Proofs using isometrie
~ will be accepted but equipollence and definitions of isometries as sets of cow
ples are gone. Three extra theorems and “Equipollent couples” (undeﬁned!}?
appear in the B-syllabus, not for any good pedagogical reasons, I think. The
overall impression is of a war-torn Geometry course straddling two syllabi
the A and B, unsure of who its ancestors are. There must surely be anothe
revision in the years ahead to set it on simpler, more clear-cut lines.
As for the B and C courses it’s a pity that some formal exercise in proving
has not replaced the Geometry — such as proving that Superman is betta

than Spiderman. Anything.

Quantity or Quality?

From a third level person’s viewpoint, quantity in second level syllabi is spoik
ing quality in the student. It will happen again with these syllabi: there ar(
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still too many topics blurring out the essentials. The trouble is, no syllabus
committee is going to reduce the Junior Cycle syllabi to the seminal exercises
of manipulating an arithmetic quotient, solving an algebraic equation, con-
verting units, carrying through a 3-line proof (if A then B; but A; hence B)
and postpone or forget altogether sets, relations, graphs, timetables, percent-
ages, interest, trigonometry, statistics and geometry. Practicing a minimal set
of skills like the first four mentioned would bore a large class and probably
a teacher. Yet current syllabi preoccupation with a large number of detailed
topics is hindering the teacher’s purpose: that of nurturing mathematical skills

in every pupil.

In Brief Then ...

Apart from hacking at the Geometry and throwing in an larnréd Bireann
timetable and an ogive there is little that is new in the new A and B syllabi.
The emergence of the C—Course is a great achievement—unless that old dog
cutback debilitates it at birth. The disappearance of proofs for the majority
should be seen as an interesting experiment (to be kept under review?). As for
relevance, “Relevance!” is an ephemeral cry made about syllabi. It comes and
goes like a si-ghaoithe and will come in due course to meet the new syllabi.
The truth is, what industry needs, as what third level needs, is people with
thinking skills. Mathematics classes are good vehicles for producing these
gkills — if the classes were not so crowded, the teachers not so harried and
the syllabi not so full.

And by 1990 ...

By 1990 three new Leaving Certificate Syllabi must be ready to meet the
pioneering class of "87.

When a ministerial order suspended the Department of Education Senior
Cycle Syllabus Committee in 1986 (to make way for the CEB) the Committee
had completed work on new Leaving Cert B and C gyllabi. If this Commit-
tee’s work is not discarded, work only needs to be done on the A syllabus
(which leaves very little in the current revisions for third level people to in-
fluence [1]). For the record, the Junior Cycle Syllabus Committee consisted
of 3 teachers’ representatives, 3 school management representatives and 2-3
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The Theory of Blunders!

department inspectors. There was a third level representative on the Senior
ep . '

mimittee.
Cyc’ifhg: are questions still to be answered: What course should those first

ils follow who started in September 1987 and who would normally
year PUP the Group Certificate in 19907 Will calculators be allowed in time?
hav? d(i,]lllihe next Junior Cycle review be even more democratic than the last
Am‘i? wBuf, we can at least raise our hats to the first syllabus in Irish schools
one’

which will have a certificate at three levels

T.C. Hurley

We all come across mathematical blunders of all types and sizes when
orrecting scripts, answering questions, during discussions or when checking
omework. Very often, these blunders can be corrected with no recurrence by

onvincing the students of the error of their ways e.g. a frequent error which

: _ 1 1 1 1
ccurs 1m different guises is p + 7= pyrwy so ask them to work out 3 + 5

References ad ==

What happens on many occasions is that the student fails to stop and think
hat perhaps something he or she has been doing all his or her mathematical
life, and getting away with it, may be incorrect, and in fact uiterly false. A
tudent at one time came up to me having failed the exam totally convinced
e should have passed. I looked up his script and discovered that everywhere
e should have integrated he differentiated and everywhere he should have
ifferentiated he integrated, and nearly all done correctly! He flew through
he exam at the next attempt. Why hadn’t I spotted this during the year? (I
ave a reason, closely approaching an excuse!)

We don’t expect such blunders from a student in our small honours classes,
ut they still occur and we can be on the lookout by marking some work before
he official examination. We haven’t anywhere approaching the resources to
ort out these problems in our large pass classes. Unfortunately very often
he first time we see some of our students’ work is at the end of the year and
hen it is too late. What we need to do is take in work regularly, go through it
urselves and return the work sndividuslly pointing out errors and asking that
roblems, similar to those where the errors occurred, be attempted and handed
in again for checking. Of course this is impossible with the very large numbers
e have to cater for e.g. this year I have some classes of approximately 180,
30 and 100 students and to give this kind of attention to even omne of these
ould take up all of my time, with no lectures anywhere else.

Is there a solution? One solution, not necessarily unique, would be to
ouble the staff numbers in our Mathematics Departments, but of course this
impractical without even considering our present economic climate. (I have
- presented a solution so as a Mathematician need I go any further?) From

my own experience of teaching small classes here and abroad I am totally

1 D.J. Hurley and M. Stynes, Basic Mathematical Skills of UCC Students,
§ Il\;fS Bulletin 17 (1986}, 68-75.

artment of Physical and Quantitative Sciences

Dep gional Technical College.

Waterford Re
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convinced that with the proper tuition most of the glaring blunders can b
eliminated.

What I think we need to do as a first step is to convince the students th
such blunders occur, in fact they themselves do make such errors and, to really
get it to sink in, that such blunders will lose lots of marks thereby dramatically
increasing the probability of failure. Explain the difference between a blund
and a slip, which all of us make from time to time. This hopefully will produ
a type of self-reconsideration and discussion amongst themselves and with
and tutors when available. Whenever I point out a silly error in class the
is always a great commotion, thinking perhaps it is a joke on some po
individual, but the class is never convinced when I point out that over 40%
them made that particular error on last year’s exam.

I thought I’d try something out on this year’s first year pass class. In ord
to set the background, the first year pass class at U.C.G., excluding Enginee
is broken into two groups, a “fast” stream getting 3 hours of lectures a week
and a “slow” stream getting 4 hours of lectures a week, but both leading k
the same examination. The streams are divided very roughly by the Leavi
Certificate or Matriculation results, those with apparently weaker results goi
into the “slow” stream. I had the “slow” stream so I tried the true-false tes|
reproduced below on these apparently weaker students but I feel the result
would not have deviated very much had all the first year class been included

This true-false test most consisted of blunders I frequently encountered with ag

[ would be most happy to hear about these. I would be interested also to hear
of other methods, tried or untried, on how to try to eliminate these glaring

errors which occur right up to degree level.
Previous articles [1, 2, 3] report on deficiencies in the mathematical skills

of our students but the reader will appreciate the differences between what is
discussed in these and what is contained here although of course the two are

interconnected in many ways.

The Questions

Which of the following are true(T) and which are false(F)?

1 1
2. a:>,y=>;> ;, for all z,y,2 #0,y # 0.

3. 0°=1.

1 1
4. :c>y=>;<;fora]la:,y,z;£0,y%0.

o . . ,: 5. (22 +y?)? = z* + y*.
few other items thrown in just for discussion or fun. ( Note in particular thal ( v) y
question 19 is one of the fun ones which certainly produced some reaction ani 6. sinaz = asinz.
7
8

discussion.) _
. oo+ 00 =00 and co —co =0.

The test was given at the beginning of the lecture and students were m

formed that they had 40-45 minutes in which to complete it. They were asket 1° = 1.

to keep a record of their answers on the question sheet for discussion later ané

answer sheets were to be completed anonymously. All had finished within 3% 9. 1 = 1 = _1.
‘ 2 2 4

minutes and answer slips were collected. For the rest of that class and for

all of the next, I went through the quiz demonstrating where possible why 10. A function always has an inverse.

such a statement was false (by e.g. assuming the statement was true and thei%, 8

proving that 0 = 1). There were interesting discussions during and especially} 11, £ 9 + h2 = 64 then h = *—.

after each class. 3
Following the discussions with the students and reading through the ques{: 12. £ >0 = 1 <0

tions now, I can see a number of improvements that could be made, but in th ’ z )

interests of accurate statistics, they are reproduced here as given. I am surc

others have examples of their favourite and frequently occurring blunders ant 13.
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Y+l _2 ghenz=
14.%—_—1—)(—;53—3 b 1.
1

15. 3.(I+ y)—l = 3.:5—1 + 3.y .

Percentage Responses

Question % answering True % answering False % not answering

(42 4 4z +4)=—3°+4z+4. 1: 32% 68% 0%
16. ~(="+ ) 2: 8% 92% 0%
7 et = 1 3 44% 55% 1%
: Va 4: 86% 13% 0%
s 5: 13% 89% 0%
18. (@) =¢"- 6: 32% 65% 3%
19. This question is false! T 68% 31% 1%
8: 62% 38% 0%
90. log s + log z® = 3log . 9: 20% 80% 0%
10: 61% 36% 3%
21 +/0.04 =02 11: 13% 87% 0%
92. The solution set of the equation z(z +2) =0is z = —2. 12: 34% 66% 0%
13: 17% 83% %
2. (VA2 = (=) 14: 31% 69% 0%
3z-2) _3 15: 57% 42% 0%
24, _;2.__—2— =1 when z = 2. 16: 29% 98% 0%
17: 58% 40% 2% .
25. 60° = = radians. 18: 63% 37% 0%
3 19: 61% 22% 17% o
96. If 72 < 4 then £ < £2. 20: 48% 49% 3% .
21: 25% 73% 3%
22: 86% 15% 0% |
23: 29% 67% 4%
24: 1% 98% 1%
25: 84% 13% 3%

26: 76% 23% 1%
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; 7} that a certain teacher, nameless of course,

There 15 2 Slfzg ggxfef;:aisl:o,) itllzormed the school inspector t'hat he/she

n > certa_m }s:;r Int:ermediate Certificate class to always choose B in the mul-

advxsed }fls/ art of the Mathematics paper as he/she had done a survey of‘

tiple cho}ce pfeW years and B had come up more often than any other.. L

thii pre;'::: will be no multiple choice questions when the new Intermediat
believe

Certificate syllabus is examined.

Wedderburn’s Theorem Revisited (Again)

Des MacHale

References

d C.T. O’Sullivan, Mathematical Horses for Elementary

In a previous note in this Bulletin [3] we proved the following theorem
LM.S. Newsletter, 6(1982), 50-54.

which generalises the theorem of Wedderburn that a finite division ring is a
field.

[1] N. O’Murchu an
Physscs COUTsES,

1 tical skills test of First Year Students sn Cork
[2] RCPOrt O;Lgtg:: ?a;;csﬂlb?:iesﬁtt:i 14(1985) 33"43. Theorem 1 Lec R be a l'ing Witb uzu'(;y. Ifmore tban IRI _ \/im elements
RTC m g deLVLende H 3

of R are invertible, then R is a field.
Hurley and Martin Stynes, Basic Mathematical skills of U.C.C.

8] Dorel Bull. LM.S. 17(1986), 68-75.

The bound |R|— +/|R| is the best possible because of the existence of Zy3,
students,

which has exactly p? — p invertible elements for any prime p, but yet is not a
field.

Another formulation of Wedderburn’s theorem is the following: If R is a
finite ring with unity and every non-zero element of R is invertible, then R is
commubative.

This naturally leads to the following question: If R is a finite ring with
unity, can we force the conclusion that R is commutative by assuming that
a proper subset of the non-zero elements are invertible? The purpose of this
note is to prove the following:

Department of Mathematics
University College
Galway

Theorem 2 Let R be a finite ring with unity. If every non-sero ring commu-
tator [z,y] = zy — yz of R is invertible then R is commutative.

Proof Let ¢ = [z,y| # 0. Consider the sequence ¢, c?,¢®, ... Since R is finite,
¢* = ¢/ for some § > ¢ > 1. By hypothesis, ¢ is invertible, so ¢/~% = 1 and
thus ¢/~**! = ¢, R now satisfies the hypothesis of a theorem of Herstein [1],
[a,b]™(#®) = [a, b] for n(a,b) > 1. If we are prepared to invoke the full power
of this theorem, it follows at once that R is commutative. Alternatively, we
can use the following more elementary result of Herstein [2]: If R is a finite
ring in which every nilpotent element is cenméral, then R is commutative.
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‘We argue as follows. Let z,y,r be elements of R with zy # 0. Then Periodic Functions

(yz—=zy)™ = yz—=y implies that (yz)" = yz = 0. Similarly, (z(ry}—(ry)z)" =
z(ry) — (ry)z implies that zry = 0. A simple induction argument now shows
that all nilpotent elements are central. Thus R is commutative.

%
.
%
o
f

Seédn Dineen

Of course, R need not be a field, as the example (Z4, @, ®) shows.

Finally, we are indebted to Professor T.J. Laffey who has supplied the
following ingenious alternative proof of Theorem 1.

Let R be a finite ring with unity 1, let T = T(R) be its group of units and
suppose that T # R\ {0}. Let 0 £z € R\T andlet o ={t €T |zt = z}.
We note that Tj is a subgroup of T and that V = {zv | v € T } is a subset of
R\ (T u{0}), with |V| = |T|/|To|- Let W = {t— 1|t € To}. We note that
|W| = |To| and that W ¢ R\ T, since t — 1 € T and zt = z implies z = 0.
Hence |R| > |T|+|V|+1=|T|+|T|/|To| + 1 and also |R| > |T|+ |To|. Hence
we deduce that |R| — |T| > max(|To|,|T|/|To| + 1. So |R| - |T| = +/|R| + 1.

This article arose out of correspondence between the author and Mark
eneghan regarding certain inconsistencies in the treatment of periodic func-
ons in our secondary school texts. A complete and rigorous treatment of
his topic requires the introduction of such concepts as convergent sequence,
ontinuity, greatest lower bound, induction and linear independence. We have
ried to minimize the impact of these concepts and at the same time to clarify
he situation regarding the sum of periodic functions.

Jefinition 1 A function f : R +— R is periodic if there exists a # 0 such that

flz+a)=f(z) forallzeR. (1)

References Any real number a satisfying (1) is called a period of f.

[1] LN. Herstein, Noncommutative Rings, Carus Mathematical Monographs, pemarks (1) If a is a period of f then so is —a, since f(z)=flz—a+a) =
f I — a).

No. 15, Mathematical Association of America, Washington DC, 1968.

[2] LN. Herstein, A note on rings with central nilpotent elements, Proc. Amer.
Math. Soc. 5(1954), 620.

i
[3] D. MacHale, Wedderburn’s theorem revisited, Irish Math. Soc. Bulletin § flz+na)=f(z+(n-1)a+a) = f(z+(n-1)a),
17(1986), 44-46. i

};;%fusing induction and our first remark.

%(3) If @ and b are periods of f then a-+b is also a period of f, since f(z+a+b) =
flz+a) = f(z).
Jie+a) = 1)

gel.’" trr.zentc ofl Matgen;atics %Example 1 Let f be given by f(z) = sinz. Then f is periodic since f(z +
niversity College Cork. ' %2';7) = f(z) for all z € R.

Example 2 Let f be given by

f(a) = 0 if z is rational
1 if z is rrational

B %If e and z are rational and y irrational then a + z is rational and a + y is
irational, and hence f(z+ a) = 0 = f(z) and f(y +a) = 1 = f(y). Thus
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every rational number is a period of f. If b is irrational and z is rational the
b+ z is irrational and f(z 4 b) = 1 # f(z) and hence b is not a period of f,

Examples 1 and 2 are typical of the only cases that can occur, as t},
following proposition demonstrates.

Proposition 1 If f is a periodic function then exactly one of the followiy
holds:

(a) there exists a sequence (), of positive periods of f which converges tJ
gero;

(b) there exists a positive number a such that na, n = 0,£1,42,... form

the periods of f. 311
Proof If (a) does not hold then there exists a positive number § such thy
the interval [0,6) does not contain a positive period of f. We claim that i
interval of the form [a,a + §) contains two distinct periods of f. Suppog
otherwise, so that there exist periods b and ¢ with a < b < ¢ < a+ § for som
a. By Remarks (1) and (3) c — b is also a period of f, but since 0 < ¢ —b <|
this is a contradiction. Hence our claim is proven.

Now consider the intervals I; = [0, 6], I = [§, 26],...,I, = [(n—1)6, né],..
Since f is periodic at least one of these intervals contains a period of f. Le
ny be the least positive integer such that I,, contains a period of f. We hay
seen that I,, can contain only one period. This is then the smallest positiv
period of f. We denote it by a. By Remark (2), na, n = 0,+1,+2,... an
periods of f. Suppose b is a further period. Then there exists an integer 1
such that na < b < (n + 1)a. By Remarks (1) and (3) (n + 1)a — b is also
period of f. Since 0 < (n+ 1)a —b < a this is a contradiction, and so no sucl
b exists. This completes the proof.

Remarks (4) If case (a) of Proposition 1 applies then, using our earlier re
marks, it is not difficult to show that the periods of f form a dense subset d
R.

(5) If f is continuous and (a,)y, is a sequence of periods of f which converge
to a, it is easy to see that a is also a period of f. Hence, using (4), we cai
conclude that if a continuous function f has a sequence of periods which con:
verges to O then f is a constant function.

(6) If one is willing to use the concept of greatest lower bound then the prod
of Proposition 1 can be shortened.

NOTES 53

Definition 2 If case (b) of Proposition 1 applies to f then the smallest pos-
itive period of f is called the period of f.

Thus we have singled out a special period of f. The statement “f has
period a” should be read as “f is a periodic function and the period of f is a”.

Combining Proposition 1 and Remark 5 we see that if f is a non-constant,
continuous periodic function and a is a period of f then there exists a positive
integer n such that the period of f is a /n. To determine n one must investigate
further the function f.

Example 8 Let f(z) = sinz. By Example 1, f is periodic and the period of
f is 2 /n for some positive integer n. .

Now f(0) = 0 = sin(2x/n). If n > 2 then 27/n < « and sin(27/n) > 0.
Hence n < 2. We now check n = 2. Since f(r/2+27/2) = f(37/2) = —1 and
f(x/2) = 1 it follows that 2 is not the correct value for n. Hence n = 1 and
the period of f is 2. . ‘ '

This result can, of course be obtained from a graph; while this suffices in
practise, it is not a full proof.

We now consider the sum f + g of two periodic functions (the case f — ¢
is handled in the same fashion).

Lemma 1 If f and g are periodic and k is a common period of f and g then
k is also a period of f + g.

The proof is obvious.

Remark (7) If k is the period of both f and g, this does not give us precise
information on the period of f + g as the following example shows.

Example 4 Let f(z) = sinz + cos(z/2), and let g(z) = sinz — cos(z/2). It
is easily seen that f and g are periodic and that 4 is the period of both
functions (see Example 6). (f + g)(z) = 2sinz and so the period of f + g is
2m.

Example 5 Let f(z) = sin az + cos bz where a and b are non-zero real num-
bers. We shall now show that f is periodic if and only if a/b is a rational

number. N
We confine ourselves to the case where a and b are both positive; the other
cases are handled similarly.




»
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Suppose first that a/b is rational. Let a/b = p/q where p and q are positive
integers. Then 27p/a = 27wq/b = k, say.
Let g(z) = sinaz and h(z) = cosbz. Since

2w . 27\ | ; .
g(z+—)=sm a(z-}-T) = gin(az + 27) = sin az = g(z)
a

and

h (z—f— 2%) =cos |b (:c + 2%) = cos(bz + 27) = cosbz = h(z)

we have that 27 /a is a period of g and 27 /b is a period of h. By Remark (2)

2 2 .
k=p— = q—1r is a common period of g and h. Hence by Lemma 1 k is a

period of f = g+ h and so f is a periodic function
Conversely, suppose that f = g+ h is periodic. Let k be a non-zero period
of f. Then f(0) = f(k) = f(—k) = 1. Hence
sin(ak) + cos(bk) = 1
sin(—ak) + cos(bk) = 1
and this implies cosbk = 1 and sin ak = 0. Therefore bk = 2nx and ak = mx
for some integers n,m and so % = Zﬂ is a rational number.
n

The example above shows how to construct non-periodic functions which
are sums of periodic functions; sin z + cos(\/iz), for instance, is not periodic.
In our next example we show how to find the period of sin az + cos bz.

Example 6 Let a = Py where p and g are positive integers which have no

common factors. By Example 5 f(z) = sin(az) + cos(bz) is periodic, and we
wish to find its period.

We introduce an auxiliary function g(z) = sin(pz) + cos(gz). Then g is
also periodic, and f and g are related as follows:

() = =) +=(o52)
gl-=z = sin|{p-z )| +cos|qg—-z
q q q

sin(az) + cos(bz) + f(z)

and f(%z) - g(%%z)=g(z).

NOTES 5

We now find a relationship between the periods of fand g. If l is a period of
f then

g(ﬁgz) -2 (f=+0)) =1 (Ze+1) = £ (%) = o)

b, . . ;
Hence -1 is a period of g. Since the period of a continuous periodic function

is the smallest positive period, it follows that
. b
(the period of g) < F (the period of f)
Similarly, if k is a period of g then %k is a period of f. Hence

(the period of f) < % (the period of g)
Therefore, we have
(the period of f) = % (the period of g)
We now proceed to show that the period of g is 2. Since g(z + 27) =
sin p(z+27)+cos g(z+27) = sin(pz+2)+cos(gz+27) = sin pz-+cos 9z = g(z),

it follows that the period of g is 27 /o for some positive integer . We must
show that o = 1. Now

. . 2
81N pZ + cos ¢z = sin [p (z+ ?ﬂ-)] + cos [q <z+ 21)]
a

Hence
. . 27 2w
sSmpz—sm |p|T+— )| =cos |qg|z+ — — CO8 ¢z ,
a a
and . s
2 cos (pz + B—) sin (—p—-) = —2sin (qz + g_) sin (q_ﬂ-) ,
a a a a
so that

cos (pa: - %) sin (%r) = sin (qz - %r) sin (%r) (2)
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i iction. Since
e o # 1; we shall show that this leads to a contradiction

Now suppos ast one of p/c and ¢ [ is not an integer.

p and g have no common factor, at le

Suppose that p/a is not an integer. Then the left hand side of (2) is not zero,

and hence the same is true of the right hand side, .
also not an integer. Similarly, if we assume that g/ is
follows that p/c is not an integer. Therefore we have

T
sing—aéO.
o

which implies that ¢/a is
not an integer, then it
sin ik #0 and
a
If we differentiate (2) 4n times we get
4 P™\ sin (B5) = 4"sin(q$+ﬂ)8in(£)
p"cos(pz—i-: sin | q - .
Letting z = 0 we get

3

Now if p # g then when n — 00 the left hand side of (3) tends t;)l either E o
co. However, the right hand side of (3) is a non-zero constant}.l emf p ; 4{
Since p and ¢ have no common factors, this can occur only when p=¢ =1

In this case, (2) becomes
1r . T
cos (:v+ —) = sin (:z:+ ;)
o

and hence tan(z + 7/a) = 1 for all z. If we let £ = —m/a we obtain i
contradiction, and hence we must have a = 1.

To summarise the above, we have shown the following:. the p;.nc})ld of
in(pz)+cos(gz) is 2, and the period of sin((p/q)bz) +cos(bz) is 2.1rq/ w enhp
and h no common factor. We can use this to find t {
eriod of sinnz + sin nz, where m and n are arbitrary positive mtegers; }:e;
fnakin no assumption about common factors. Let d = gcd(m, n). T'heI} _erl
. ! such that m = m'd, n = n'd and gcd(m',n) =
that the period of sin nz + cosmz 18

and q are positive integers wit

are positive integers m,
Letting a = m and b = n we see
m' 2w

Zw_n: = ged(m,n)

Y’

NOTES

Similarly, the period of sin(z/n) + cos(z/m) is

2rnm
ged(m, n)

Periodic functions of the form sin az+sin bz and cos az+cos bz are treated
in the same way, and simple functions such as sin az cos bz can be reduced to
the cases discussed above by the use of appropriate trigonometric identities.

At this point, the reader may well ask the following questions:

a) Is there any criterion for decidin g if the sum of periodic functions is peri-
P P
odic?

(b) Are there any general methods of determining the period of a sum from
the periods of the component functions?

(c) How does one determine the period of a general trigonometric polynomial
i.e., a linear combination of powers of the functions sin z and cos z?

(d) How large is the class of functions consisting of trigonometric polynomials?

A special case of question (a) is answered in Example 5. The same method
can be used to obtain the following general result:

Proposition 2 Let f and g be continuous periodic functions such that f +g
is non-constant. Let a and b be non-gero periods of f and g respectively. Then
f + g is periodic if and only if a/b is rational; furthermore, every period of
f + g has the form na/m for some integers n and m.

This result is not true in general without the assumption of continuity.

Asregards (d), the Stone-Weierstrass theorem shows that every continuous
periodic function can be approximated uniformly by trigonometric polynomi-
als, and the theory of Fourier Series shows that every continuous periodic
function is the (pointwise) infinite sum of sines and cosines. Thus, by consid-
ering sums of sines and cosines, one is led to a very large class of functions, and
there is no general simple method for calculating the period of a trigonometric
polynomial.

There are, however, a number of techniques which can be used for arbitrary

periodic functions, and which may help to locate the period. We briefly discuss
these in our final example.




58 IMS Bulletin 20, 1988

Example 7 The function f(z) = 3sinz — 4sin® z has period 27/3. The
easiest way to see this is to note that f(z) = sin3z. In the gemeral case,
however, we may not have such a nice formula for f, or we may be considering
something like sin 16z expanded in sines and cosines and may not recognise
the simple form of the function. Hence, we illustrate some techniques for
finding the period without using the fact that f (z) = sin 3z.

First, one checks easily that f is not constant. Now, since sin z has period
27, we know that the period of f is 27 /n for some positive integer n. If 27 /n
is the period of f then, since f(0) =0 and f(z) =sinz (3 - 4 sin® z), we must
have either sin(27/n) =0 or 3 —4sin®(27/n) = 0. Now sin(27/n) = 0 implies
n < 2 and 3 — 4sin’(27/n) =0 implies sin(27/n) = +4/3/2. Since f(z) >0
for small positive values of z it follows that the first positive zero of f is at
least /3. Hence 2m/n 2 /3, ie. n < 6. It remains therefore to check the
casesn=1,...,6.

Now f >0 on [0,7/3], and the factorisation sin z (3 — 4 sin® z) shows that
f<0on /3, 27/3]. Hence 21 /n > 2x/3, giving n < 3. Since 27 is a period
of f, it suffices to check the cases n = 2 and n =3.

n = 2: Since f(r/2) # f(37/2) we cannot have n = 2.

n = 3: Checking some values of z such as /6 and /2, one finds that
n = 3 is not ruled out. Hence we check to see if 27/3 is a period of f.
Now

2 1 3
sin (z+—3lr-> = —Esinz+-\£2——cosx

. 2 1. 3 . 3
sm2 (a:+ _;3,7[) = Zsmza:— —\/Z—jsmxcosz+zcos2x.

Hence

e+

1
-2-(—sinz+\/§cosz) (3—sin2:a:+2\/5-3-sin:z:<:osz—Elcos2 a:)

sin z (—sinz+\/§cosa:) (s'ma:+\/§cosa:)
sin z (3 cos? £ — sin? :v) =sing (3 — 4sin? a:)
f(=)

Hence 27/3 is a period of f, and therefore it is the period of f.

NOTES

To summarise the methods used in this example:

(1) By inspection, find one period of the function (the smaller the better).

(2 Loc'a.te some geros of f. The period is at least equal to the maximum
distance between adjacent zeros. If it is not possible to find any zeros,

try to locate points at which f takes the same value and proceed as
above.

(3) The first step rules out all but a finite number of possible values. Using

(2), check these values at a number of points. This will generally rule
out most values.

(4) Finally, check which of the remaining values are periods of f.
At some stage one should also check that the function is non-constant. If one

begins to get a constant value for f while carrying out the above steps, one
should try to prove that f is constant.

Department of Mathematics
University College Dublin Dublin 4.




Lagrange Multipliers

Tony Christofides

It is not uncommon to hear a person say “I don’t really understan.d La.
grange multipliers”. The object of this note is to offer some explanation ¢
what they are. .

We recall that a necessary condition for the real-valued function f(x)
(x = (1,...,2n) € R") to have a stationary point at a € R", subject to the
“side conditions”

g1(x)=...=ge(x) =0 (1)

is the existence of suitable Lagrange Multipliers, i.e. real numbers Ay, ..., X,
such that

f'(a) + Migy(a) + - + Axgr(a) = 0 ()

Here, of course, f',gj,...,g) are the derivatives of the relevant functions, s

that f’, for instance, is the vector

o LA
8z, ' Oz,
We shall assume throughout that we are dealing with functions which pos

sess the required degrees of difterentiability. Condition (2), together with the
equations

gi(a)=...=gr(a)=0

usually enable one to determine the points a. '

Now think of the points satisfying the side conditions (1) as a \.rane'ty V
in R™. A point a is a stationary point of f subject to (1) if the dlrect?onal
derivative of f at a “in any direction contained in V” vanishes. More‘preasely,
a is such that the directional derivative of f at a in the direction u is zero fo
every unit vector u tangent to V at a.

This directional derivative is the scalar product (f’(a),u). Thus f'(g
is in the orthogonal complement of the tangent space to V at a. Let us
denote this tangent space by TaV. Assuming that the side conditions (]
are not redundant, g¢{(a),...,g;(a) are linearly independent and span the

60
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normal space to V at a. Thus these vectors form a basis for the

orthogonal
complement of TV, and therefore

f'(8) + Agi(a) + - + Apgh(a) = 0

for some Ag,...,

More analytically now, let f: A — R, and gi:A—-R,fori=1,...,k be
sufficiently smooth functions—say with continuous second order derivatives—
on an open subset 4 of R™ . Suppose we have a “parametrisation” or “local
coordinate system” for V at a. Thus, we have an open subset B of R* and a
homeomorphism ¢ : B — R™ which maps B onto an open set in V containing
a. We assume that ¢ is as smooth as the other functions considered. The
existence of such a function is guaranteed by the implicit function theorem.

The problem of finding stationary points of f subject to (1) can now be
reduced to that of finding ordinary stationary points, with no si
for the function f o ¢.

Letting ¢~(a) = to, we apply the chain rule to the equation
(fop) (to) =0,

which is a necessary condition for tq to be a stationary point for f o ¢. This
gives

de conditions,

(fo <P)' (to) = f'(a)¢’(te) =0

Hence f'(a) is orthogonal to each of the columns of the matrix ©'(to), and it
is well known that these columns span Ty V.
In order to determine the nature of the stationary point a, one must look

at the quadratic part of f(a + h) — f(a) for values of h for which a + h lies
on V, i.e. those h such that a + h = ¢(to +s), s € R*. Then

fla+h) - f(a) = Q(s) + n(s)

where

Q) = 5 (£/@) (¢ (t0)s)” + 7' (a)e" (t0)(6)?)

|7(s)| being of the order of |Is|l®. Bear in mind that f"(a) is a scalar valued
bilinear mapping, while " (to) is a bilinear mapping with values in R™.

Let M be the matrix associated with the bilinear form Q. If M is non-
singular and definite then a is an extreme point of f subject to (1). If M
is non-singular and indefinite then a will be a conditional saddle point of f.
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Finally, if M is singular, no conclusions can be drawn concerning the nature

of the stationary point &.
We conclude with some examples.

Example 1 A sufficient condition for f(z,y) to have a minimum at a sta-

tionary point (a,b) subject to a side condition parametrised by = = 1(t),
f:m: fa:y

y = pa(t) is
@ (fo Fy) (w’{ )
fz'y fyy)(‘P’2>+ ‘plzl 20

(¢ ¢2) (
,y) =1 - 2zy. Then f has a maximum at (0,0) subject

Example 2 Let f(z
a minimum at (0, 0) subject to

toy — £3 = 0, but has neither a maximun nor
y—z2=0.In both cases we have M = 0.

= 1— 2zy — 20z — 2Yz has a stationary

point at (0,0, 0). Parametrising the side condition y = z by ¢(r, 5) = (r,8,9),

we find that
0 -2
M= ( -2 =2 )

s a maximum at (0,0, 0) subject toz =Y = 2
o —z = y = z. The point (0,0,0) is a

Example 3 The function f(z,¥,2)

which is indefinite. f(z, ¥, z) ha
but has a minimum at (0,0,0) subject t
saddle point subject to y = 2.

Department of Mathematics
University College Galway
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A Note on Integrating Composed Functions |
\

Paul Barry :

This note groups together several concepts that are met at different places in
a first course on real analysis in a way that allows graphical representation.
It provides a generalisation of the formula (see [1]):

7(v) b
[ syt [ 1(@)do=b50) - o1 (2
1(a) a
which has a certain pedigree—see 2], [3] and particularly [4], where a proof
is given in the case where f and f -1 are assumed only to be integrable.

We shall use the (Riemann-)Stieltjes integral as given, for instance, in [7]. |

We deal only with definite integrals.
We begin by recalling the formula for integration by parts for the Stieltjes |

integral. Let u,v:[c,d] ~ R, and assume the integral fcd u dv exists. Then

(1)

d d
/c udv+ /c vdu = u(d)v(d) — u(c)v(c) (2)

Figure 1

63
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~Finally, if we assume that g~ ! exists and is continuous, then another appeal

to the formula for substitution in a Stieltjes integral yields

A particular case of this is illustrated in figure 1 where u and v are in.
creasing. In this special case, note that y = vo u~1(z) represents the curve iy |

the (z, y)-plane which also has parametric representation ¢ — (u(t), v(t)). K ¢ g(d) F(b)
moreover u and v are differentiable, we note that i ‘ /c (v dgly) = /( | f-I (g—l(z)) dg (g—l(z)) = /( ) F_l(z) dz
% gic Fla
dy = o (u_l ( x)) (u—l)’ (z) E ‘ Hence we get the following formula relating the integral of a composed function
dz ” | and its inverse:
B ",( ) F(b) b
u (u=1(z)) () / F~Y(z)dz +/ F(z)dz = bF(b) — aF(a) (5)
shows the link between the chain rule and the derivative of a parametrised | F(a) @
curve. 'y
We now apply these results to the following situation, where for sinplicit

we shall assume that f : [a,b] — [, d] is strictly increasing, with f(a)=cand 4

F(b) = d. Let g: [c,d] = R be integrable with respect to f~1. Then from (2)
we obtain

d d
/ fldg+ f gdf-t = Fd)eld) - FH)ele)
FHFE) g (£(8)) — £~ (£(a)) 9(f(a))

Il

Letting F = go f, we get

d d L
14 +f df 1 =bF(b) —aF(a 3 .
[riage [ oam=or0) - oF@) CiE o\ G g
By imposing stronger conditions on f and/or on g, we can find more manage- fiag= f Bd
able forms of (3). For example, if we assume that f is continuous, then the | 5 - 3
formula for change of variable in a Stieltjes integral yields the following: P 0
igure

-1

/;d M y) dgly) = /jf_l(i

-1

d F G b
[swao= [, ot 47 e = [ Fads

Hence we obtain (not surprisingly!)

d) b
£ (7(e) da1(a)) = [ = dF(@)
)

a The special case g(y) = y yields (1). Formulas (3)-(5) are illustrated in a
special case in figure 2. Notice that in this case the curve z = F(z) has
parametrisation y — (f~*(y), 9(y)). In the case that f and g are differentiable,
the F'(z) = ¢'(y)/(f*)'(v) = ¢'(y) f'(z) as we would expect.

As an example in this latter case, we take f(z) = tanz On [0,7/4], and

9{y) = y% on [0,1]. Then (3} and (5) yield

1
/ arctan+/z dz + /
0 0

and

wf4 1 2

tan2$dz=2/

1
ya.rct;anydy-i—/
0 0

b b
f s dF(z) + /a Flz) dz = bF(3) — aF(a)
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In particular, we find (see figure 3):

! T
/ arctany/zdz = — — 1
0 2

Yanx

A less elementary but perhaps more instructive example is obtained by
taking f(z) = €* and g(y) = [y]. Using (3), we get

n In (r)
[ wydl+ " ) do = n ingo ©)

The first integral here is 35 In (5) = In(n!). Hence we obtain

In (n)
nln(n) — / [e®] dz, or
0

n

In(n!)

n! —_——
cfé ( )[e’] dz

- By estimating the integral appearing here, we can obtain some simple bounds

NOTES

on n!. For example

In (n) In (n)
/ [e“]dz</ edr=n-1
0 0

and hence
n n
nl>e (—)
e
x
i
ln(n) €T
y=e
In(n)
‘[ [e*]dx
o
Lnnl
0 1 PR
Figure 4

On the other hand, subtracting the areas of the triangles in figure 4

In (n) In (n) n
/; [e"] d= > /0 e dz — 2—: % (In(5) — In(5 — 1))

1
n—l—Eln(n)

67

which yields n! < ey/n(n/e)". Hence at very little expense (6) yields the
following well known bounds:

e (g)n <nl< e\/ﬁ(g)n
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Reverting to the gemeral case, where f is arbitrary and a(y) = [yl we “
obtain the formula

S e [Vela=sei-er@l

F(a)<n<f(b)
For example, Ezlv’ yn=N3-— f(fv[:cz] dz.

So far we have only considered increasing functions. The reader may be
interested in deriving and interpreting graphically the following equation:

N 1 N~°
S x4 M) ae=nt
T " 1

I would like to record my indebtedness to my colleague Tom Power fo |
references [4] and (8].
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CONFERENCES

Operator Theory and Operator Algebras
University College Cork

The Third Annual Conference on Operator Theory and Operator Algebras will

be held in University College Cork, from Wednesda
: ) y 29th J to S
2nd July, 1988. The principal speakers will include une to Saturday

LD. Berg (Illinois)

L. Brown (Purdue)

L. Cuntz (Marseille)
Z. Slodkowski

Further information can be obtained from the organizers:
G.J. Murphy & R.E. Harte
Department of Mathematics

University College
Cork, Ireland.

Conference on Functional Analysis
El Escorial, Spain

3& Cox;f;r:nc;son Functional Analysis will be held in El Escorial, Madrid from

une o 18, 1988. The Organising Committ i , i

L o . The g Committee consists of J. Ansemil, F.
It is expected that the main speakers will include R i

J. Diestel, J.M. Isidro and M. Valdivia, RS0 Rerted
Further information can be obtained from

Departmento de Anilisis Mateméatico
Facultad de Matem4ticas
Universidad Complutense

28040 Madrid, Spain
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Groups In Galway 88

It has been decided to celebrate the tenth anmiversary of this mee!;ing I?y
adding an extra day to the usual (two-day) format. The 1983 meeting will
commence after lunch on Thursday May 26 and conclude after lunch on Sat-
urday May 28. )

Aymong the speakers will be Laci Kovacs and Mike Newman, both from
ANU, Canberra. Any enquiries should be addressed to:

Dr. J. McDermott
Groups in Galway 88
Department of Mathematics
University College Galway
Galway, Ireland.

Real Analysis Symposium, Coleraine

A Symposium on Real Analysis will take place in Coleraine From August 9th
“ 1']2.‘;1}: rlr?fugl speakers will include P. Bullen (British .Columbia), G. Cross
(Waterloo, Ontario), R. Henstock (Ulster), J. Kurzweil .(Pragu.e), P.Y.CL;e
(Singapore), J. Mawhin (Louvain), W. Pfeffer (California Davis) and C.A.
Rogers (U.C. London).

Further details can be obtained from:

P. Muldowney
Magee College
Derry, Northern Ireland

BOOK REVIEWS

MATHEMATICS AND OPTIMAL FORM by Stefan Hildebrandt and Anthony
Yomba

cientific American Books, 1985, xvi+215pp. ISBN 0-7167-5009-0

“Namely, because the shape of the whole universe is most perfect
and, in fact, designed by the wisest creator, nothing in all the

world will occur in which no maximum or minimum rule is simehow
shining forth.”
Leonhard Euler

This quotation from Euler illustrates the depth of the current connecting
nathematics with the search for an understanding of the origin, purpose and
tructure of the world. One of the oldest examples of the search for a unify-
ng principle is that of Xenophanes (about 565-470 BC) who established the
xistence of a unique God, who is necessarily spherical, by an argument from
omogeneity. More recently, we have the string theories of particle physics
hich seek to derive all four fundamental forces of nature by considering Rie-
ann surfaces embedded as minimal surfaces in a ten-dimensional space-time.

The authors of this book are well-known for their work on variational
roblems in partial differential equations, and particularly on minimal sur-
aces. Thus they have a professional interest in soap films, where fascinating

tographs of complex bubbles go hand in hand with hard analysis, a priori

mates, and novel geometric constructs.

The book appears in the excellent Scientific American Library series, and
herefore raises hopes that are not entirely filled in this case. There are lots of
ntertaining anecdotes and quotations, and many interesting pictures. There
 an impressive variety of examples of extreme behaviour and extremal prin-
ples. What is missing is the unfolding of a logical argument, or a series of
eepenong insights such as is offered by some other books in the collection

h as Weinberg: “The Discovery of Subatomic Particles”, and Atkins: “The

ond Law”. Also, there is an inclination to include material which, while of

siderable interest, is not closely relevant to the main theme. For example, a

i e ——————— T S A
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page is given to the story Aeneas and Dido, as an offshoot of the isoperimetric

roperty of the circle. )
g IAll in all, this is a fascinating collection, drawn from legends. philosophy,

natural science, literature and art, illustrating mankind’s search for perfection,

D.J. Simms
School of Mathematics
Trinity College, Dublin.

CALCULUS FOR PHYSICS by Richard Dalven
McGraw-Hill, 1984, x+149pp. St.£8.25

Cries of frustration emanating from both teachers and pu]?ils have been
heard with increasing frequency in introductory physi-cs courses in recent years
- inadequate mastery of elementary mathematics be.mg the source of‘the an-
guish on both sides. Indeed, the pages of this Bulletin hzfve not been immune
from the consequences of this problem [1,2]. While considerable study of th.e
situation on both sides of the Atlantic has isolated some of the causes of this
worldwide problem, finding sensible remedies has proved more difficult. .

The widespread nature of this very real problem, hovs:ever, has .spawmi(
a growth industry of books, self-teaching aids, computer-aided-learning pack-

ages and similar patent medicines, all designed t,? help t.he student to over-
come his/her difficulties prior to, or in parallel with, an mt.roductory co:rs;
in physics. The principal difficulty with these ap;waoche§ is that they el]l( ;
to assume that the student has infinite time at his/her disposl to undertake |

remedial study of the required mathematical techfliqu'es. Some “Mathernatxcs
for Introductory Physics” or “Calculus for the Sc1en§1st and .Engm'eer” bq :

exceed 1000 pages! Many of the self-pacing aids require long intensive sessio :
and lack suitable instructional material. The physics teacher who attempts ;0
incorporate some revision of mathematical methods into the course, soon finds
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* himself teaching a course in mathematics only, and usually an inadequate one

at that.

Here at last is a litle book which manages to get the balance right for those
students whose problems are principally due to an inadequate background
in elementary calculus. The book is designed for students taking their first
course in physics and who have already taken, or are taking concurrently, a
course in differentiation and integration. In the Irish situation this book would
be useful for students taking Leaving Certificate higher level courses in both
physics and mathematics or for those taking a first year course in introductory
physics at a third-level institution. Richard Dalven is an experienced lecturer
in freshman physics at the University of California at Berkeley and he shows
a great sympathy for the problems encountered by students at this level. No
pretence is made that this book represents a course in mathematics; rather,
this is a review of introductory calculus, particularly where it is applied in
elementary physics courses. Throughout the book the student is referred to
his/her course in calculus in a refreshingly direct and informal tone. (‘T would
suggest that you work through this material fairly slowly, using your calculus
book to refresh your memory on the mathematical points’).

In a mere 118 pages of text all the essential topics needed for an introduc-
tory physics course are reviewed. No attempt is made to teach physics per
se and the applications taken from physics are confined to the very simple.
An emphasis is placed, however, on the interpretation of the key concepts in
differentiation and integration as they arise in physics at this level.

Physics teachers are often amazed at the resistance of some mathematics
teachers to invoke examples from everyday experience as an aid to understand-
ing. This waste of good pedagogical opportunity seems extraordinary to this
reviewer who had the particular privilege to be introduced to calculus by the
late Mr. Fred Holland. Thirty years on, I still vividly recall him racing up and
down the classroom with the floor covered with chalk lines as he kept reducing
the distance over which he timed himself. His use of his pupils’ understanding
of the idea of speed to communicate insight of the nature of a derivative was,
like all his teaching, masterful.

Dr. Dalven’s book comprises two main sections, vz, derivatives and differ-
entials (Chapter 2) and sums and integrals (Chapter 3). These are preceded
by a short chapter in which the ideas of variables, functions and graphs are
reviewed. It seems to be precisely in the area of the essential concepts of vari-
ables and functional relationships that the point of view of the mathematician
has diverged most strongly from the physicist in recent years. Surely teachers
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of mathematics and physics should give some thought to why so many of our
students fail to recognize in our respective approaches what must in the last
resort be one and the same concepts. Dr. Dalven’s viewpoint in these matters
is unreservedly that of a physicist, although throughout the book his approach
is as mathematically rigorous as is possible keeping his primary objectives in
mind.

The presentation of differentiation is standard, workmanlike and full of
insight. The usual interpretation in terms of graphs is given in a clear and
precise way. Special attention is given to functions of time because of their
central importance in physics and applications to the description of motion in
one dimension are discussed in some detail.

Two short sections are devoted to differentials and it must be said that this
reviewer has some considerable reservations about these. In the first place,
one wonders if it is really necessary to introduce the idea of a differential at all
at this level. The same material can just as well be presented as relationships
between small but finite changes in physical quantities which, in any event,
are what are measured in any physical situation. Avoidance of the concept
of a differential altogether would also avoid the highly dubious implication
that certain ‘differentials’ (e.g. the change in heat energy giving rise to an
infinitesimal increase in the temperature of a thermodynamic system) are
perfect differentials in the mathematical sense. A student reader might be
best advised to skip over both sections on differentials (about ten pages in
It is the final chapter (integration) that should make this book most useful
for a student taking a course in introductory physics. The idea of an integral
is interpreted in two ways both of which arise naturally in physics. First of all
the integral is presented as an ‘antiderivative’ and later it is introduced as a
‘sum of infinitesmal elements’. The ‘antiderivative’ approach is the easiest and
most natural way, at an elementary level, to determine the potential energy
function corresponding to a given force field. On the other hand, if one wants
to compute the magnetic field strength at a point due to the electric current
in a particular circuit, the integral seen as a sum of infinitesmal elements is a
more obvious approach to take.

The general presentation of the book is pleasant and easy to read in keeping
with the low-key of unhysterical approach of the author in the text. The
chapters are broken up into sections at the end of each of which there is a
short set of exercises. Worked solutions to all these exercises are given in an
appendix. Any student embarking on a third-level programme that includes a

~ course in physics could do a lot worse th

. Thefe is I'mt much point in worrying about calculus
_ ulative skills of elementary algebra, geometry and tri

. stl.ldents who go on to take mathematics courses at
third level turn out to be totally lacking in such skills?

[1] O Murchu, N. and O’Sullivan, C., Mathematical Ho

Book Reviews
75

it carefully. an to buy this book and work through

Unfo'rtuna.(:.ely, many students entering Irish third-level institutions to take
courses including physics have deficiencies in their mathematical foundation of
a more fundamental nature than those which Dr. Dalven sets out to remedy.

when the basic manip-
gonometry are missing,
ly adequate level in the
such a large fraction of
Leaving Certificate and

Al these-topics are meant to be covered at a perfect
Intermediate Certificate programme. Why is it that
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PROBLEM PAGE

Editor: Phil Rippon

Ray Ryan has had the excellent idea of numbering the problems' according
to the issue in which they appear. This should make it much easier to ke?p
track of earlier problems. For example, the problems in the previous Bulletin
will be referred to from now on as Problems 19.1, 19.2 and 19.3. '

This relabelling exercise reminds me of the story about th? Real Anal'ysls
textbook which contained an apology by the author for numbering the sections
before he had defined the positive integers! o

I came across the first problem this time at an Open Um\.rers%ty Summer
School. A student there was tormenting the Maths tutors with it (and also
with Problem 18.1, whose solution appears below).

20.1 Find a formula, whose value is 64, which uses the integer 4 twice and
no operations other than:

+,—:Xs/;T’\/'_and!

1 gather that Michedl O Searcéid has devised a formula for 64 which uses
only one 4, but this requires the functions | | a.fld In as well. Also, it is
possible to display 64 on a calculator (more precisely, on some ca,lcula.tors)
using a single 4 followed by the four key strokes: xx ==. This was pointed
out by the daughter (aged 14) of one of my colleagues here at the OU.

Next, here is another problem from my colleague John Mason.

20.2 Given n positive integers ag,k = 1,2,...,n (not necessarily distinct),

prove that some sum of the form
ak1+ak,+...+akm, 1;<_k1<k2<...<km_<_n,

is equal to 0 mod n.

Finally, a pretty geometric problem which I heard from Harold Shapiro

some years ago.

20.8 Show that if a square lies within a triangle, then its area is at most half
the area of the triangle.

PROBLEM PAGE

Now for solutions to the problems in Issue 18.

18.1 Find the next entry in the following sequence:
1,11,21,1211, 111221, 312211, ...

This problem has circulated widely in recent years and provoked much
interest and anguish! To understand the pattern, think of any given term,
such as 1211, as a string of positive integers and then describe this string in
the form:

one one, one two, two ones.

This description yields the next string: 111221. The string following 312211
is, therefore, 13112221.

As mentioned in Issue 18, this problem is associated with John Conway who
has made a remarkable investigation of the behaviour of sequences determined
by this process (which he calls “Audioactive Decay”). This is written up in
Eureka, vol 46, 1986, the journal of the Archimedeans, which is the Cambridge
students mathematical society.

A string of digits is said to split if it can be written as a product LR of
strings L and R, such that

(LR)n = Lan:

Here L, denotes the nth descendant of L under this process. A string with
no non-trivial splitting is called an element. Conway lists a sequence of 92
common elements (each with an appropriate name) all of which are involved
in the descendants of every string, except 22 (hydrogen) and the empty string.
Furthermore, eventually only the common elements {and possibly a few ‘iso-
topes’) are involved.

For example, the 7th descendant of the string 1 is

forn=1,2,....

11132.13211,

which is written here as the product of the two common elements Hafnium
and Stannium. All descendants of this compound involve only the 92 common
elements.

Finally, apart from the two exceptions above, the lengths of strings involv-
ing common elements increase exponentially at a universal rate A = 1.3035...
and the relative abundances of the common elements in such strings tend to
fixed positive values.
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18.2 Find an infinite family of pairs of distinct integers m,n such that m,n
have the same prime factors, and m — 1,n — 1 have the same prime
factors.

This problem came from the book ‘It seems I'm a Jew’ by Freiman and
Nathanson, which chronicles the methods which have apparently been used
to discriminate against Jewish students in the Soviet Union. By setting high
school students fiendishly difficult problems in oral exams, it seems that even
the most able can be excluded for the prestigious Faculty of Mechanics and
Mathematics at Moscow State University. In an appendix to the book, Andrei
Sakharov discusses such problems, including the one above, which he describes
as ‘incredibly difficult’ at this level. The solution

2
m=2F-1, n=(2k—1)v,
is easy to verify, once you’ve seen it.

Phil Rippon

Faculty of Mathematics

Open University

Milton Keynes, MK7 6AA, UK

INSTRUCTIONS TO AUTHORS

e

Authors may submit articles to the Bulletin either as TEX input files, or as
typewritten manuscripts. Handwritten manuscripts are not acceptable.

Manuscripts ‘prep‘arked‘ with TEX

The Bulletin is typeset with TgX, and authors who have access to TEX are
encouraged to submit articles in the form of TgX input files. Plain TgX, AMS-
TEX and IATEX are equally acceptable. The TEX file should be accompanied
by any non-standard style files which have been used. ‘

The input files can be transmitted to the Editor either by electronic mail
to:

EARN / BITNE;T: MATRYANG@GVAX1.UCG.IE,

or on an IBM Si-—inch diskette, or a Macintosh diskette. ;
Two printed copies of the article should also be sent to the Editor.

Typéd Manuscripts

Typed nianuscripts should be double-spaced, with wide margins, on numbered
pages. Commencement of paragraphs should be clearly indicated. Hand-
written symbols should be clear and unambiguous. [lustrations should be
carefully prepared on separate sheets in black ink. Two copies of each illus-

tration should be submitted: one with lettering added, and the other without ‘ ﬁ 1

lettering. Two copies of the manuscript should be sent to the Editor.




