Axiomatic Method and Independence
Results!

Radoslav Dimitrié

Ever since the discovery of non-Euclidean geometries, mathematicians were
interested in formal methods and axiomatization of mathematical theories. It
became apparent that ever present Euclidean geometry was not the only true
geometrical reality, but that it could rather be substituted by other geometries
equally good and interesting on their own. ’

I will not exaggerate if I say that modern mathematics (by that I mean this
century’s mathematics) has been dominated by the use of formal i.e. axiomatic
method. The aim of this article is to give a brief survey of axiomatic method
with a few concrete applications.

Foundations of Geometry -

There is little doubt as to whether the thirteen books of Euclid’s “Elements”
were the most valuable and influential scientific books of all time, if for nothing
else but for the length of time during which they maintained their importance
and influence in Mathematics, research and education. For over 2000 years the
“Elements” were the standard of mathematical rigour, clarity and “absolute
truth”. '

As it is always the case in scientific progress, however, there has never been
room for contentment with any scientific achievement and this applied even
to so “perfect” a work as Euclid’s. Ever since the appearance of “Elements”
there were questions about independence and consistency of Euclid’s postu-
lates; could any of the postulates (a more customary modern word for them
is axioms) be derived as a theorem from the rest of the postulates? A special
attention was paid to the famous fifth postulate:
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Axiom E For any plane = , any line | C m and any point A € w\ | there

exists at most one line k containing the point A and not intersecting the line

L

This postulate was shown to be equivalent (given all other axioms) to

~ the statement that there exists one rectangle or that the sum of the angles
 of a triangle equals to two right angles etc. Among the most penetrating
. mathematicians working on the subject were G. Saccheri (1667 - 1733) and

7.H. Lambert (1728 - 1777) who have developed geometry arising from axioms
without fifth postulate or its equivalents.

In the year 1829 the foundations of a great part of the 20th century mathe-
matics (and we can safely say of the 20th century physics as well as arts) were
established. Nikolai Ivanovich Lobachevski (1793 - 1856) published a paper

[14] in which he developed a geometry that differed from Euclidean geometry
by one axiom only. Namely it used the following negation of the fifth postulate

E

Axiom LB For some plane mo , some line lo C mo and some point Ag € 7o\ lo
there exist at least two distinct lines ky , kz through the point Ag that do not

intersect the line ly .

Great ideas appear in different great minds almost simultaneously: Janos
Bolyai (1802 - 1860) had published in 1832 the same ideas in the appendix of
his father’s book (see [1]). Karl Friedrich Gauss (1777 - 1855) is said to have
had investigations in the new geometry but he cannot be praised as much for
the discovery not only because he did not publish any result of this kind but
also because he had an entirely negative and discouraging attitude towards
the discoveries of Janos Bolyai who abandoned mathematics ab a young age
after being exposed to such an attitude of the “King of mathematicians”.

The theory was systematically built up according Lo strict deductive rules
and had no inconsistencics. It was a big surprise ab the time and there im-
medintely arose questions as to whethor the new geometry was as valuablo as
the vuling Kuclidean geometry, in mathemalics, philosophy and the physical
world (the space measurements were taken with no instant success, only Lo be
successfully performed after A. Einstein’s work in relativity theory).

In the same period differential and projective geometrics were developing.
The first one led Bernhard Riemann (1826 - 1866) to the introduction (in
1854) of what is nowdays called Riemann spaces. Among them there stood
out in particular spaces with constant curvature embracing the parabolic type




that corresponds to the Euclidean space, the hyperbolic type corresponding to

Lobachevski - Bolyai space and elliptic type corresponding to projective spac
with su.ltably chosen metric. Among the first interpretations of Lobachevsk
- Bolyai Geometry was the one given by Eugenio Beltrami (1835 - 1900). H

used a pseudosphere to draw lines | and m, n (asymptotically converging to
L) w,lt'h mﬁr: = P.and mNl=nnNl=49, and thus interpreting them as
“straight lines” obtained the LB axiom. Note that in this case the sum of the

angles of a triangle is less than 180° .
A similar interpretation of Riemannian Geometry is to be found in a mode

of a sphere, where great circles are interpreted as “straight lines” and thus
they always intersect (in two points), and the sum of the angles of a triangle

is greater than 180° .

On the .basis of Beltrami’s ideas, Felix Klein (1849-1925) has given in 1871
in [13] bi'i.SlC results on consistency of Lobachevski-Bolyai geometry, whereas
David Hilbert formally resolved problems of consistency of both I’Euclidean -

and Lobachevski - Bolyai geometry in [9] and [11] respectively.

Hilbert started with a set of primative notions (non-defined intuitive no-

tions such that new notions are built up of these). The primitive notions are: a

set § (“space”), classes of subsets of § (“lines” and “planes”), ternary relation

B and quaternary relation D on § (B : “betweeness”, D : “equidistance”)
(At the same time M. Pieri published in [16] and [17] two axiomatic s stem.
of Euclidean geometry that each depended on 6nly one primitive notio);l ) ’
Several statements (axioms) give properties of primitive notions tha.t are
most likely to be intuitively clear from “everyday experience”. The axioms are
usually grouped into: Azioms of incidence (stating set theoretical relations
between points, lines and planes), azioms of order (listing properties of th
relation B ), azioms of congruence (about the relation D) and the azio .
of continuity (enabling the Archimedean property). Geometry del;erminert'i1
by these axioms is called absolute-geomeiry. If the axiom E or LB is added
to the axioms of absolute geometry, then we get respectively Euclid
Lobackevski-Bolyai geometry. e
It is also assumed that in constructing an axiomatic theory T use is mad
of other axiomatic theories (in our case set theory) which are .presﬁpposed (i ee
all their primitive notions and axioms are adjoined to those of T/)p . -
"¢ The main demand on any axiomatic system is its consistency ien £i§at no
- antinomy can be derived from the given set of axioms. The quest.io.n. whether
some axioms can be shown to be the consequences of the others is that of
“'.‘ndepcf.ndence of an axiomatic system. Though it may not be as important as
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consistency,
od to the discovery of new geometries. Proving consistency and independence

 consists of finding an (outside) consistent model satisfying the axioms (after
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historically it is the investigation of independence of axioms that

certain interpretation) of the theory. An axiomatic system is categorical if any
two of its models are isomorphic i.e. if it has a sufficiently strong axiomatic
system determining uniquely its model up to an isomorphism.

The Euclidean geometry has been proved to be categorical and consistent

provided the axiomatic system for arithmetic of real numbers is consistent.
Namely the three-dimensional Cartesian space R® has its own analytic ge-
ometry and the notions like points, lines, planes, betweenes and equidistance
can be represented as ordered triples of real numbers and certain equations,
together with a set and number-theoretical relations between them. Also the
Euclidean fifth axiom E can be proved by proving that certain system of equa-
tions has a unique solution. The consistency of Lobachevski-Bolyai geometry
was proved by interpreting it on Beltrami-Klein space — three-dimensional pro-
jective space with its analytic geometry (three-dimensional projective space is

a quotient space of R® \ 0 under the equivalence relation of proportionality.
of coordinates). The BL axiom holds in this model and it is obvious that
Cartesian and Beltrami-Klein models are not isomorphic (they contain con-
tradictory theorems E and LB respectively). Since both of these models are
models for absolute geometry we conclude that absolute geometry is not cat-
egorical (since it contains at least two non-isomorphic models). On the other
hand, as in the case of Euclidean geometry, Lobachevski-Bolyai geometry is
also categorical.

We would like to emphasize here that the consistency of Euclidean and
Lobachevski-Bolyai geometry is only relative - dependent on consistency of the
arithmetic of real numbers. :

For a detailed treatment of developing foundations of both geometries we
recommend [2] to the interested reader.

Axioms for Set Theory

Methods used in a formal mathematical theory T are characterized by a very
precise language, and, since I will content myself with the theory necessary
for most of todays mathematics, namely set theory, I will call that language
LST - the language of set theory. With LST we use the rules of logic (the
axioms of first order logic, to be precise) and the rules for the formation of
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complex statements out of elementary ones. (This game must look strange to
an outsider, since a non-mathematician friend of mine has recently told me
that my mathematics is all squiggles together with lots of equality signs and

zeros.)
The rules of the game are called axioms and, in the case of set theory, the

most widely used system is the system of Zermelo-Fraenkel axioms (abbrevi-
ated as ZF); we give their heuristic list:

. Eztenstonality: sets having the same elements are equal.

. Union: the union of sets is a set.

1
2
3. Infinity: there is an infinite set.
4

. Power set: the collection of all subsets of a given set is likewise a.

seb.
5. Foundation: any non-empty set has a member disjoint from that
set.
6. Replacement Scheme: for any set and a function with that set as

domain, its image is also a set.

The replacement scheme as such is infinite and thus the list of axioms is
infinite. Moreover it has been proved that no finite collection of LST sentences
suffices to axiomatize ZF theory.

Though there may be various systems of axioms suitable for the same or
different purposes, apparently not all of them are equally good or good at all.
Every axiomatic system however should be tested by the following criteria:

(a) Consistency: T is consistens if there is no statement S such that both §
and nonS can be derived from T or equivalently, if there is at least one
statement S (formulated in the language of T ) that cannot be deducted

from T . .

Completeness: T is complete if, for every statement 5 formulated in the
language of the theory T , either S or nonS can be derived from the
axioms of T according to the deduction rules.

(b)

(c) Independente: T has an independent set of axioms if none of its axioms
can be dérived from the remaining set of axioms.
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As it is easy to conclude from the definitions just given that there is a
relationship between consistency, completeness and independence, we note
the following:

Proposition A statement S is not provable in T if and only if T + non§ Is

consistent.

Model Theory

As noted before, the first proofs on consistency and independence of a theory
were given at the time of the appearance of non-Euclidean geometries by the
use of models. The majority of the results on these metatheorethical questions
in set theory were also achieved by the use of models; it is enough to get a
(consistent) model for proving that a system of axioms is consistent. A very
strong theorems in this area were given by Kurt Godel (see e.g. [8]).

.o

G5del Completeness Theorem If T is any consistent set of statements
then there exists a model for T whose cardinality does not exceed the cardi-
nality of the number of statements in T if T is infinite and is countable if T
is finite.

There is a Lowenheim-Skolem theorem very gimilar in content to the just
stated theorem . One of the amazing consequences here is that there exists a
countable family of sets with the property that if the membership relation is
restricted only to those sets, then we get the model for the whole set theory
(keep in mind that set theory contains uncountable sets and at the first sight it
looks paradoxical that uncountable sets can be pictured in a countable model).

Gédel Incompleteness Theorem If T is a consistent, sufficiently strong
(ie. if Peano arithmetic could be built in it), effective list of sentences (ie. if
there is an algorithm for recognizing a sentence from the list), then there is a
statement S such that neither S nor nonS can be derived from T .

Gédel Underivability Theorem If T is consistent, sufficiently strong, ef-
fective list of sentences, then T FC\(T) (i.e. consistency of an axiomatic
system cannot be proved from the axioms of that system alone).

There are numerous applications of the methods used in model theory
to the areas outside set theory. At the moment we give an example from
non-commutative group theory.
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i finite number of A I ALT
Given a of words w; = af*...q;" = 1 p; €7, a; €

in a group G, can we determine (find an algorithnll) whether another wor
w =17 Or, equivalently, can w be obtained from w; by taking multiplication
inverses and conjugation? This problem was translated into arithmetic term
and proved unsolvable in classical axiomatic system of set theory.

We give two more extremely important and useful results from model the.

ory:

Theorem If a theory T has an infinite model or arbitrary large finite models

then T admits models of arbitrarily large cardinalities.

Compactness Theorem If every finite subset of an axiomatic system T

has a model, then the whole T has a model,

The Axiom Of Choice And The General
Continuum Hypothesis

From what has been said so far we understand that one cannot hope to base

all conceivable mathematics on a single axiomatic basis and that is the reason

that a continuous search for additional axioms is carried out. Various new
axioms are being discovered every day. The space allowed makes it possible

to list only the two most common ones: The axiom of choice and the general

continuum hypothesis,

Axiom of Choice (AC): For a given collection of sets, there is a set that
contains one and only one element of each set of the given collection. This

is equivalent to well ordering of any set as well as to the existence of infinite

products.

General Continuum Hypothesis (GCH): For every infinite set X and
every family ¥ of Sf'bsets of X , ¥ is in one-to-one correspondence either with
a subset of X or with a set of all subsets of X . Using the aleph notation it is

the statement that 2% = Rat1. Ifa =0, we have the Continuum hypothesis
CH .

Cantor used the axiom of choice as early as 1878 and the continuum hy- i

pothesis is also his [3]. Hilbert’s first problem (see [10]) was the question of
proving AC and CH from the system ZF . Both axiom of choice and the
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generalized continuum hypothesis however were proved to be independent of
ZF . We list a few results from [4,8,5] (Con(T) denotes consistency of T ,

and ZFC = ZF + AC ):

(1) Con(ZF) = Con(ZFCQC) ,

(2) Con(ZF) = Con(ZF + nonAC) ,

(3) Con(ZF) = Con(ZFC + GCH) ,

(4) Con(ZF) = Con(ZFC + nonCH) ,

(5) ZF + GCH = AC,

(6) ZFC => there is a set of real numbers that is not Lebesgue mea-
surable ,

(7) Con(ZF) = Con(ZF + nonAC+ there is a set of real numbers
that is not Lebesgue measurable).

Whereas most mathematicians use AC in their work without questioning it,
CH and GCH are not nearly as widely accepted. Moreover there are some
very “natural” results following from the negation of GCH or CH .

Algorithmic Unsolvability

At the end of this survey I would like to point out a different kind of inde-
pendence problems, yet closely related to the ones discussed in the previous
section.

Ancient mathematicians have already noted that the ratio of the hy-
potenuse of an isosceles right triangle to its leg cannot be rational. They
have also posed such questions as squaring the circle, doubling the cube or
trisecting the angle by the use of only straight edge and compass., All these
problems were shown to be impossible to solve, that is to say the axioms of
the ruler and the compass do not suffice for making the required construc-
tions (the problems were positively solved by the use of some more powerful
devices... ). It was also shown that there are polynomials already of the fifth
degree whose roots could not be found by means of radicals (this last problem
may had been the main step in the discovery of groups).

The most sophisticated among “modern” achievements of this kind is an
ingenious solution (by Yuri Matijasevi¢ in [15]) of Hilberth’s tenth problem
(see [10], also [6,7]).
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Hilbert’s tenth problem asked for an algorithm testing Diophantine poly.

nomial equations for having integer (or, equivalently, natural) solutions. Al

though the notion of an algorithm can be precisely defined we will assume an

intuitive feeling for the notion and, say that an algorithm is a “procedure

(“circulum vitiosus”!) that could be carried out by a computer in a finitely

many steps and a bounded amount of time.

Definitions (a) A set S of ordered n-tuples (ai,...,a,) of natural num-

bers is called Diophantine if for each such an n-tuple there is a polyno-

mial P(ay,...,an,%1,...)%m), m > 0, with integer coefficients such that

Play,...,an,2i,...,%m) = 0 has a solution in natural numbers z,,... , z,,.
(b) A set S of ordered n-tuples of natural numbers is listable (or, in a more
latinized version, recursively enumerable) if there is a well defined algorithm

for making a list of all members of S .

(c) A set S C N is computable if there is an algorithm (of finitely many

steps) for deciding whether any natural number belongs to § .

A few examples of Diophantine sets are as follows: integers having an odd

divisor, the sets { (z,y) : < vy}, {(2,y) : = divides y} .... Some more
examples can be obtained through the notion of a Diophantine function. It

is such a function that its graph is a Diophantine set; or more precisely: a

function f of n variables is a Diophantine function if {(z1,...,%Zm,y) 1y =
f(z1,...,2,) } is a Diophantine set. The functions T'(n) = 1+ -+ n =

n(n+1)/2 , E(n, k) = n*, F(n) =n!, B(n,k) = (}) are Diophantine.

It is easy to see that every Diophantine set is recursively enumerable. 1

However the following fundamental result (see [15]) shows that the converse

is also true:

Theorem A set is Diophantine if and only if it is recursively enumerable.

If we express this theorem in, for us more suitable “polynomial form”, we

have:

Main Theorem There is a procedure that can be used on any algorithm

listing a set S of n-tuples of natural numbers, to get a polynomial P with
integer coefficients such that P(ai,...,an,%1,...,%m) = 0 has a solution in

nonnegative integers z1,. .., %m if and only if (a,...,a,) €S .

Now, if a set § is computable it is recursively enumerable but a basic result
in recursion theory states that the converse is not true:
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Theorem There is a listable set S C N which is not computable.

Corollary There is a polynomial P(a, zy,...,%,) such that there is no al-
gorithm for deciding whether P(a,zy,...,%m) = 0 has integral solutions in
Z1,---,%m , for any given values of the integer parameter a .

This is a strong negative solution to Hilbert’s tenth problem since it states
that there is no algorithm for testing solvability of Diophantine equations,

even with one parameter only.
Notice that the result does not give the way to find out which Diophantine

equations are indeed algorithmically solvable.
Let me now mention a few positive results. One of the consequences of

the Main Theorem above is that there exists a polynomial P with integer
coefficients containing all prime numbers among its values (there are various
examples of such polynomials of less than 12 variables and polynomials of the
kind of the fifth degree). For the novelty’s sake we list one of such polynomials

(see [12]) containing “only” 325 symbols:
Theorem The set of primes is exactly the positive range (as the variables
range over natural numbers) of the following polynomial of the 25th degree

and 26 variables :

P(the letters of the English alphabet) =
(k+2){1— (wz+h+7—q)2—[(gk+2g+k+1)(h+7)+h—2f
—[16(k+1)3(k+2)(n+1)2+ 1~ f2P = 2n+p+q+z—¢)
~[2(e+2)(a+1)2+1— %> = [(a® - 1)y* + 1~ z?)?
~[16r%y*(a® = 1) + 1 = u?P = [(a® = )PP + 1~ m?? —(ai+k+1—-1—14
~[((a+ (v - a))* = 1)(n +4dy)* + 1 = (z + cu)*]
—(n+l+v—y)P—[p+illa—n- 1) + b(2an + 2a — n® — 2n — 2) — m|?
~lg+yle—p- 1)+s(2ap+2a-—p2—2p——2)—-x]z—-
~|z + pl(a — p) + t(2ap — p* = 1) — pm|’}
It is worth mentioning that the methods discovered can be used to refor-
miilate some of the classical problems in mathematics, by getting equivalent

statements saying that certain polynomial Diophantine equations have no so-
lutions in nonnegative integers. Among such classical problems are the last
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Introduction

This article arises from a postgraduate course in geometry given by Professor
Barry at U.C.C. As part of the course we undertook some project work on
the geometry courses of Georges Papy, Gustave Choquet and Jean Dieudonne.
Here we hope to review these three courses and their potential for inclusion
in the secondary school curriculum.

First of all, we must ask the question: why teach geometry? One obvi-
ous reason for teaching geometry is its application to real life situations and
problems. Through the study of geometry children develop practical skills in
~ such areas as measurement, calculations of areas and volumes, use of grids and
co-ordinate systems. It also gives them an understanding of the concepts of
two-dimensional and three-dimensional space. Clearly geometry has applica-
tion to topics in mathematics and can indeed be regarded as a unifying theme
in the mathematics curriculum. It provides a rich source of visualisation for
arithmetical and algebraic concepts. Geometry is essential for mastering cal-
culus and therefore all other fields that have calculus as a prerequisite. A
_major reason for the inclusion of geometry in the secondary school curricu-
~ lum is its value as a vehicle for stimulating and exercising general thinking
skills, skill in deductive reasoning and problem solving. Through its precise
use of language, geometry can also play a part in the development of skills in
communication. Therefore, geometry has an important role in the secondary

school curriculum.

k The next question is: How should we teach geometry in secondary schools?
It seems to us that there are two main approaches. One the one hand there
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