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On The Level
D.W. Lewis

We present a survey on the notion of the level of a field and its vari-
ous generalizations. We describe a lot of results that are attractive from an
algebraic viewpoint and also highlight the extremely interesting relations be-
tween algebra and topology that have been unearthed in the last decade in
connection with the level. We hope to persuade the reader that this is-an
appealing area of mathematics and that it should be a fruitful area for future
research. In Section 1, we look at levels of fields, in Section 2, we deal with
commutative rings and the link with topology and in Section 3, we look at
the non-commutative situation and generalisations of the idea of level.

1 TFields

Let F be a field. F is said to be formally real if —1 is not expressible as a sum
of squares in F. If F is not formally real we define the level of F', denoted
s(F), to be the smallest natural number N such that —1 is a sum of IV squares
in F' (We define s(F) = oo if F' is formally real).

The Artin-Schreier theorem [35, p.227] says that a field F' is formally real
if and only if F admits an ordering (i.e. s(F) = co if and only if F' admits an

ordering). ,
We look now at levels of some well-known fields

Example 1 F = R, the real numbers, s(R) = co.
Example 2 F = C, the complex numbers, s(C) = 1 since —1 = 12 in C.

Example 8 F = F, a finite field with p elements, p an odd prime. It is
a fairly easy exercise to show s(Fp,) = 1 if p = 1(mod 4) and s(F,) = 2 if
p = 3(mod 4). ‘

Example 4 F = Q,, the field of p-adic numbes. Then s(fy=1ifp =
1(mod 4), s(F) = 2 if p = 3 (mod 4). If F is the field of dyadic numbers then
s(F) = 4. See [35, p.151] for a proof.
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s(I') = 4 has been examined in [27, 19, 8]. We quote for example the following

theorem of [27].
Theorem Let F' be an algebraic number ficld. Then s(F") < 2 ifand only if '
is totally imaginary and the local degrees at all primes extending the rational

prime 2 are even.

See also [44], [53] for some further results. The question of how the level
s(F) is related to other field invariants has been considered. Let g(F) be

the cardinality of F/ J2, the group of square classes. Pfister [49] showed

that g(F) > 2F(-Y) /2 where s = 2k and this was improved by Djokovic
[25], using an argument involving graph theory, who showed that for s > 2,

q(FF) > 2°71 /s where s = s(F). See also (35, Ch.11] for more information.

2 Commutative Rings

The definition of level is meaningful not just for fields but for any ring with
identity element 1. The ring need not be commutative. We deal with com-
mutative case in this section and the non-commutative case in Secion 3. (One
could even discuss the level of a non-associative ring with identity but this
lias not been considered by anyone to the author’s knowledge).

R) for R the ring of algebraic integers in a p-adic field were

Results on s(
= 1,2, or 4 in this case. For R being

obtained by Riehm [55] who showed s(R)

the ring of algebraic integers in the algebraic number field K results on s(R)
were obtained in [26, 46, 47 and 44]. In particular s(R) < 4 when s(K) < o0
(R)<3

[46], and in [26] it is proved that s(R)=1if s(K)=1,s

is proved in
< 4, this theorem being attributed to M.

if s(K) < 2 and s(R) < 4 if s(K)
Kneser. For further information see the above references.
It is easy to see that the level of commubtative ring need not always be a

power of two.

R = {0,1,2,3} with addition and multiplication modulo four.

Example
zero square in R.

Then s(R) = 3 because —1 = 3 and 1 is the only non-

Knebusch [32] proved that s(R) is a power of two when R is a local ring
in which 2 is a unit. Baeza followed this up by proving the same result for

local rings with 2 a unit and had more results on levels of rings in [5],

semi-
that, for a Dedekind domain

[7, app.1], and [6]. In particular he proved in [6]
R with field of fractions F, s(F) < s(R) < 1+ s(F).
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A major landmark in the theory of levels occurred in 1979 when Dai, Lam
and Peng, [24] proved the following:-

Theorem Any positive integer may occur as the level of a commutative ring.

The sensational feature of their work was that they proved this theorem
by appealing to a theorem from topology. Their proof goes as follows:-
Let ‘

R[$1,..,,xn]

(1+22+22+ - +a3)
Le. the quotient of the Polynomial ring Rzy, -+, z,] by the ideal generated
by 1+22+22+ - -+12. Clearly s(R) < n and the problem is to show s(R) < n
is impossible. Suppose —1 is a sum of n — 1 squares in R. Then there exist
polynomials p;(z1,22, -,%s),7 = 1,2,---,n— 1 and q(z1, 22, +,Tn) such
that

R=

n—1

—1=) pi+q (1 +y i= 1"'%;?)
Jj=1

The trick is to replace z = (21, %2,...,%s) by 1z = (iz1,...,12,) where
i2 = —1. Then we may write p,;(1z) = r;(z) + is;(z), r; and s; being
real polynomials, r; being even, i.e. r;(—z) = rj(z), and s; being odd, i.e.
s5(a) = —55(a). |

Now define a map f: 8"~ ! — R"™! by

f(z) = (s1(2), s2(z),. .., 3n-1(x)) for cach z € gn-t

Since f is continuous we may apply the Borsuk-Ulam theorem from topol-
ogy [59,p.266] which says that there must exist a pair of antipodal points
of §=1 mapped to the same element of R ie. f(z) = f(—2) for some

z € 871 But f(—z) = —f(z) for all & because each s; is odd and thus
f(2) = 0i.c. 8;(2) = 0 for each j. This implies that —1 = 2;’;11 ri(2)?, i

—1 is & sum of squares in R, completing the proof by contradiction.

After the Dai-Lam-Peng paper had appeared algebraic Borsuk-Ulam the-
orems were proven by Arason-Pfister (2] and also by Knebusch [33]. The
theorem of [2] goes as follows:-

Theorem Let fi, f2,..., fn-1 be a set of polynomials in z = (z1,%2,...,%n)
with coefficients in a real closed field F'. Assume the f; are odd, i.e. f;(—z)=
—f;(z). Then there exists z € S™~* for which f;(z) = 0 for all j.
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It is easy to show that the above theorem is equivalent to the statement
that given a set of polynomials f1,..., fa-1 in z there exists z € S™™! w.ith
fi(=2) = f;(2) for each j. Write each f; as an even plus an odd polyx.xomlal‘.

“This algebraic Borsuk-Ulam theorem for polynomials in fact will yield the

full Borsuk-Ulam for continuous functions by using the Weierstrass approxi-
mation theorem and the compactness of S™~1.

Proof We briefly outline the proof. Introduce an extra indeterminante o
and multiply each monomial in f; by a suitable power of zg 8o as to make a
homogeneous polynomial f;. Replace 22 by a2 + 23 + - s z2_, (zo appears
in even powers because f; i8 odd) and obtain f; which are homogeneous
polynomials of odd degree in £1,%2,..+, Tn-1- Now aplying a theorem of
Lang [36] these polynomials must have a common zero in F™ which we may
pake to be in S*~1. (Dividing by v/~ z? is all right as they are homogeneous!)

Dai and Lam [23] investigated in much greater detail the links with topol-
ogy that had been forged in [24). They discovered that the level in algebra
is closely related to notioms in topology that had been considered earlier by
C.T. Yang [65, 66] and by Conner and Floyd (20, 21]. We describe this now.

Let (X,—) be a topological space equipped with an irfyolution -, le. a
continuous map X — X, © — T of a period two (so that T = z)

Example 1 X = 8", —: the antipodal map.
Example 2 X =C, —: complex conjugation.

Example 3 X = the Stiefel manifold Vj, , of orthonormal m-frames in RrR",
with involution &, givenby

er(v1y- - Up, Upgly- -+ Um) = (Viy ey Vry=Vrd1seeey—Um)

An equivariant map between (X,-) and (Y,—) is a continuous map f:
X — Y such that f() = f(z) for all z € X. The level of the space (X, —)
is then denoted s(X, —) and is defined by

s(X,—) = inf{n : there exists an equivariant map from (X, —) to (5™ % -)}

Essentially the same invariant as s(X,—) had been studied earlier in (20, 21]
where it was called the co-index. '

The link with algebra is obtained by associating to (X, —) the ring of all
equivariant maps from (V,-) to (C, —). This ring is denoted Ax.
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Theorem (Dai, Lam [28]) s(X,—) = s(4x)
They also define the colevel
§'(X,—) = sup{n: there exists an equivariant map from(S™71, =) to (X,-)}

Motivated by this topological notion of co-level one may define for any real
algebra A an algebraic co-level

7 .
s'(A) = sup{n : there exists a real algebra homomorphism from A to Agn-1}

It is easy to see that, for any (X, —), s'(X,—) < s'(Ax). Dai and Lam proved
[23] that if X is a real affine variety then s'(X, —) = s'(4x).

Another interesting and related notion examined in [23] is that of the
sgblev;l of a commutative ring R, denoted o(R). We say o(R) = n if 0 =
ai+as+-- ~+aﬁ+1 for elements @1, az,. .., dnp41 such that the ideal generated
by‘these (n+1) elements is the whole of R and N is the least integer for which
this property holds. One notes that o(F) = s(F) for any field F' and that

o(R) < s(R) for any R. The simplest example of a ring R where o(R) # s(R)
seems to be ‘
Q[=,y]

T (1422 +2y2)
for which it can be shown that o(R) = 2 but s(R) = 3. See [23] and [15] for
proof.

If s(R) = 1,2,4, or 8 it can be shown that o(R) = s(R) by using the
2-square, 4-square or 8-square identities [29, p.417].

For a commutative ring in which 2 is a unit it is not too hard to show [23]
that s(R) = o(R) or 1+ 0(R). The following natural question was posed and
answered in [23].

Which pairs (n,n) and (n,n+ 1) occur as (o(R), s(R)) for some R? They
showed that (n, n) occurs for all n and that (n,n+1) occursfor alln = 1,2,4 or

8. They exhibited examples for all these cases. For n(n,n -+ 1) their examples
are the rings .

R[.'L‘)_,xz,~ T4y Y1, Y2, 0 ':yu+l]

(1_E$?11+Ey?vzxi3ﬁ)

To prove o(R) =n and s(R) = n + 1 involves relating o(R) and s(R)
to the level of certain Stiefel manifolds and calculation of the level of these
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appeals to non-trivial topological results. (In particular Adams’ result on the
non-existence of elements of Hopf invariant one). We refer the reader to (23]
for the details. There are many more interesting connections with topology
in (23], in particular using results on equivariant maps into Stiefel manifolds.
Tor example Adams’ theorem on vector fields on spheres may be used to show
that for any commutative ring R, if the form nx < 1> over R represents
—1 then in fact the form nx < 1> contains p(n)x < —1> as an orthogonal
summand. (Ilere p(n) is the Murwitz-Radon number (35, p.131}).

We should also mention one question raised in [23] and still unsolved at
present, namely the Level Conjecture. Let C be a commutative ring and

Clzy, 32, + - + n]
R= 2 2
(1+a2+...+23)

[

The Level Conjecture is that s(R) =n. For &' = R we have described the
proof and Arason-Plister [2] have proved it when C is any field. It is not clear
what technique to use for an arbitrary commutative ring C.

Recently much progress has been made on the study of levels in connection
with real algebraic geometry. The following lemma is a starting point for some

of this theory.

Lemma Let B be a commutative ring with 1. Then s(R) < oo if and only
if s(F(R/p)) < o0 for all prime ideals p of R, F(R/p) denoting the field of
fractions of the integral domain R/p.

Proof See [18], [12] or [22] where it was first observed. See [18] for how
this leads to the Real Nullstellensatz and Positivstellensatz in real algebraic

geometry.

When R is the co-ordinate ring of an affine variety V without any real
points Mahé has succeeded in finding a bound for s(R) in terms of the Krull
“dimension of R (One may show easily that V' has no real points if and only if

s(R) < o).

Theorem Let I' be a real closed field and A an F—algebra of finite type with
Krull dimension d, specA having no real points. Then s(A) <d—1+ gd+1,

Proof See [43]. This theorem answers question 11.3 posed in [23].
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We finish this section by pointing out that levels are only one aspect of
the general study of sums of squares. Throughout the history of mathematics
sums of squares have been a topic of fascination and curiosity. Some general
references are [28, 61]. One particular problem is that of the Pythagoras
number p(R) for a commutative ring R. We define p(R) to be the least integer

n such that every sum of squares in R is a sum of at most n squares. The

determination of p(R) is generally a very difficult problem. See [14, 15], for
further information and references. One may also examine k-th power’s inst,:ead
of squares and can generalize the level by asking for the least n such that —1
is a sum of n k-th powers. (k should be even as it is trivial for odd k). See
[10, 9] for information on this for fields, also [30] for rings.

3 Non-Commutative Rings

There is very little in the literature about levels or sums of squares in the
non-commutative situation. The following theorems were proved recently.

Theorem (Leep, Shapiro and Wadsworth) Let D be a division algebra
finite dimensional over its centre F. Then the following three statements are
equivalent: '

(i) 0 is a non-trivial sum of squares in D;

(ii) =1 is a sum of squares in D; ]

(iii) each element of D is a sum of squares in D.
Proof See [37]. Note that if D is a field this theorem is an easy exercise

A quadratic form g over a field F' is weakly tsotropic if, for some n, the
orthogonal sum of n copies of ¢ is isotropic. '

Theorem Let D be a division algebra finite dimensional over its centre I!
Then 0 is a non-trivial sum of squares in d if and only if the irace form of D
is weakly isotropic.

(Note: the trace form is the map ¢ : D — F, g(z) = tr g, tr being the
reduced trace [56, p.296].

Proof See [39].
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It follows that s(D) < oo if and only if the trace form of D is weakly
jsotropic for D as in the above theorems. In [40] we examined the case of D
being a quaternion division algebra and obtained the following results.

Theorem There are quaternion division a]geb'fas D wih s(D) = 2k for any k
and with s(D) = 2¥ + 1 for any k.

(It is an open question whether or not other integer values can occur as
s(D) for quaternion algebras.) The examples with level 2% and 2F + 1 are
described as follows: Let F' = K((t)), the Laurent series field in one variable ¢
and let K = R(z1,%2,.-+, x,,), the rational function field in z1, T2, ..., Zn. Let

i . . .
D= %—- where a = 3 1y z?, 1.e. D is the quaternion algebra defined by

i% = a,2 = t etc. For n = 2¥41it is shown that s(D) = n. For n = 2* we use
. . —tt—

F = K(t), the rational function field, K as above, but let D = ——LF——E
and then it turns out that d(D) = n. Our techniques make use of Pfister’s
results on products of sums of squares.

One may also consider sublevels for non-commutative rings and a few re-
sults appear in [41], mainly for quaternion algebras.

From one point of view it may be argued that the appropriate general-
ization of sums of squares to the non-commutative case is sums of products
of squares. For example Szele [60] proved the following generalization of the

Artin-Schreier theorem.

Theorem Let D be any skewfield. Then D admits an ordering if and only if
—1 is not a sum of products of squares in D.

This suggests one possible generalization of level to what we will call the
product level and denote sy (R) for any ring R. The product level s (R) is the
least integer n such that —1 is a sum of n products of squares in r. Define
s7(R) = oo if —1 is not a sum of products of squares in R. Szele’s theorem
thus may be rephrased as s, (D) = oo if and only if D admits an ordering.

Not also that Albert [1] proved that an ordered skew-field must be infinite -
dimensional over its centre and thus s, (d) < oo for finite dimensional algebras.

The only result in the literature on sy is the following due to Scharlau and

Tschimmel. .

Theorem Every positive integer can occur as Sy (d) for some skewfield D.
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A Sociological Question

A.G. O’Farrell

Write on John H. White’s theory of “open” and “closed” Catholr-
cism, in the contest of religion in modern Irish soctety.

— from a Maynooth BA exam paper.

Let OP be the set of all possible opinions. When endowed with Archdeacon
Wellbeloved’s aggiornamento topology (the topology of substantial agreement
on the broad fundamentals of the question), O P becomes a completely regular
connected Hausdorff topological space. Regrettably, OP satisfies neither the
first nor the second axiom of countability, and hence is non-metrizable, but
then you can’t have everything. The space OP contains non-contractible loopy
sets of opinions, and hence is not simply-connected. The problems this poses
may sometimes be overcome by passing to the universal covering space, the
space of all idee-fixed homotopy classes of circular arguments, also known as
full socio-loopy space.

A person is a set-valued function p, defined on the set R of all real num-
bers, with values in the power set of OP. The majority of persons ordinarily
encountered have the additional property that p(t) is empty before an initial
conception-time, depending on the person (depending on some other persons,
too, who enjoy it a lot more). It is also usually found that p(t) remains con-
stant once t exceeds about 15 years after conception-time. The technical term
for this is that p(t) has been set in concrete. '

Let N denote the set of propositions contained in the Nicene Creed.

Let A denote the set of propositions contained in the Apostle’s Creed.
Let I denote the singleton: { The Pope is tops }o

Definition A person pis a catholic at time t if and only if p(t) contains the
union of N, A, and I. :

Evidently, a catholic is open at time ¢ if it holds a neighbourhood of each
of its opinions. It is closed if it holds an opinion & whenever it holds opinions
arbitrarily close to z.
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