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Introduction

I?S;?fmator@l .C)l;‘)b%mization (CO) may be defined as the problem of maxi-
oo ng1 (o.r minimizing) some measure of utility (the objective function) of a
which I‘WIFh a large bl.lt ﬁnl'te number of states. There may be constraints
Perts imit the domain which ml'lst; be searched for the optimal solution.
o 0}f>s th.e best knov'vn example 1s I‘nteger Linear Programming, optimiza-
of lins a linear functlon of a set f)f independent variables subject to a set
boger Car constraints and' the req}urement that the solution vector have in-
of partf)mponents. Special techniques have been developed for the solution
importlcular CO probl'ems, su.ch as the a?)ove example, but there are many
X reasoanc pro‘b]en')s (timetabling, S(illedullng) for which an exact solution in
of O nable time 1s'not; always possible. More precisely, there is a large class
that if Problems. which are kn?wn as NP-complete. NP-completeness means
polync an.y a:lgorlthm exists which so'lves a problem in a time which grows as a
also solm;)al In N (a measure .of the size of the problem), then all of the set are
Intoger I}J’le in polynomla! time. E?x'am'ples of NP-complete problems include
Sume or inear programming, partitioning a set of integers into 2 sets whose
the o et equal and the wefll-kn.own jI‘raYellmg Salesman problem (TSP) (find
cigniis rtest tour or Hamiltonian circuit fo'r a set of coplanar points). The
. NPance of the idea of NP-COfnpleteness is that many important problems
nown ~c1<)m}?lete and therefore, in a 'sense,.equa.lly difficult. In particular, all
in th algorithms for the TSP run in a time that grows as an exponential
e number of cities in the tour. For this reason, rather than from any
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often used as a benchmark for comparing heuris-
oximate solution of CO problems. An important
“iterative improvement” methods.

intrinsic interest, the TSP is

tics, techniques for the appr
class of heuristics are known collectively as
The heuristic begins with the system in a particular, often randomly chosen,

state. A rearrangement operation (such as 2-OPT for the TSP [1]) is applied
randomly until a new state which reduces the objective function is found. The
new configuration is adopted and the rearrangements continue until no further
improvements can be achieved. Often the heuristic will get ’stuck’ in a local,
rather than the global, minimum so it is neccessary to use several different
initial states and adopt the best final result. In fact, the problem of sticking
in a local minimum is not confined to CO, gradient descent and Newton-type
methods used in continuous optimization suffer from the same defect.

Simulated Annealing

A more systematic approach to this problem was proposed by S. Kirkpatrick
et al.[2] in 1983 based on the Metropolis algorithm. N. Metropolis et al. [3],in
1953, proposed an simple algorithm for the efficient simulation of a collection
of atoms in equilibrium at a given temperature. The following exposition of
the Metropolis algorithm follows that of S. Geman and D. Geman [4]. Let {1
denote the possible configurations of the system in question; for example w in
Q) could be the molecular positions. If the system is in thermal equilibrium
with its surroundings, then the probability of w is given by

, e—ﬁE(u) .

P(w) = -z—::;-_—ﬂ-ém 3 weN (1)
where E(w) is the energy of the configuration and g = 1/kT where k is
Boltzmann’s constant and T is temperature in degrees Kelvin. The quantities

to be calculated are usually ensemble averages of the form

‘ w)e=PE(w)
)= [ ¥ drlo) = 25 S )

where Y is some variable of interest. This expression is analytically in-
tractable. In the standard Monte Carlo approach, one restricts the sums
above to a sample of w’s drawn uniformly from 2. This approach fails in the
due to the exponential factor, as most of the mass of the distribu-
of . In other words, for satisfactory

present case
tion is concentrated in a very small part
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accuracy, excessively large samples are needed. The technique introduced in
[3] was to chose the samples from P instead of uniformly and then weight the
samples uniformly instead of by dP. In other words, one obtains w,..

s WR
from P and the ensemble average for Y is approximated by
1R
V)~ 23 Yw,) )
r=1

The sampling algorithm in [3] can be summarized as follows. Given the state
of the system at time ¢, say X (t), one randomly choses another configuration
X' and computes the energy change AE = E(X') —E(X(t)) and the quantity

9= P(X')/P(X(t)) = P47 (4)

If ¢ > 1, the move to X" is allowed and X(t+1) = X', while if g £ 1, the
transition is made with probability g. Thus, one chooses 0 < r <1 uniformly
and sets X(t+1) = X' if r < gand X(t+1) = X(t) if r > q. Metropolis et
al. prove that starting from an arbitrary state, repeated application of this
algorithm produces, in the limit of arbitrarily many applications, a sequence
of samples from a Boltzmann distribution as stated above, In (2], Kirkpatrick
et al. proposed applying the Metropolis algorithm to CO as follows. First
select a technique for randomly selecting new s
For the TSP a widely used technique is Lin’s 2-OPT, essentially taking a chain
(of a given length) from the current tour and inserting it (possibly reversed
in orientation) between two successive points in the tour. Again for TSP, the
appropriate 'energy function’ is the length of the tour under consideration, for
a timetabling problem the energy might be the number of clashes or irreconcil-
able assignments. The transformation rule (4) is then applied repeatedly until
approximate equilibrium is reached at the temperature chosen. The combina-
torial system is first ‘melted’ by being allowed to reach equilibrium at a large
value of T. The temperature is then reduced gradually, allowing the system
to reach a steady state at each discrete value of 7' chosen. This decreasing
sequence of temperatures is called an annealing schedule by analogy with the
slow cooling- annealing- of a melt of 3 physical subst
itself is called Simulated Annealing (SA) for the same reason, Note that for
large values of T (small values of B) new states which increase the energy are
likely to be accepted, while for small values of T such uphill moves will be
rare. This capacity to escape from local minima is what distinguishes SA from

tates from the current state.

ance and the technique
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intuiti that cooling must
ical intuition suggests :

. . ive improvement. Physical mt O the
e lt‘eriglveslgzpto 4void (persisting with the a,nalcl)lgyofr;mall) hsics) the
o Suﬂ?aenf . defective crystal or glass, with only locat }:n Eonditions chures.
formation of a be proved (see below) that, under cetf1 a o o e
g aabe i ill converge to the sta

i this procedure wi : orresponding
am‘eahng f'c}fi‘li‘? the e:ergy function. In pra?tlce, theizs <;c;nd1 i

nim : Y '

t‘0t'.ti;:f(iaeilmbut; SA still provides ‘good’ solutions in many
sal ,

Applications of Simulated Annealing

A lts
' 1bli A has consisted of reports on the resu
AN t'he s p'ubl;s:;i(ilo:o:}:d(jnbicause of its simplic.ity anI;l cc:)x;::x:;n:}f;
S expenmtel used TSP to evaluate the technique. : efI; orts on the
e freq1uen i.ztic vary. C. Skiskim and B. Golden [5] ound 54 to
et leéléAO rocedure and moreover fou.nd the ;()ier1 nance of
S ?O e itive I:'.o the details of the annealing sch;: u el.a o
e seIlSIonsidered N-city TSP with N < 100.S ;: aut er Paper
e e C';C)ldenJcL Lutton found that, for N > 250, (:'1 ;; e
e rop aJndd ;ile. convex hull algorithm. Mo.re generally, 1;:, R
s L e alnf a wide variety of optimization problem\;’ i o
s e are ; 17,8,9]. LO. Bohachevsky et fxl.[lO], .f ey and
e 1] aretahs,rs l,lz-:ve used Simulated Annealing succe}s:s.u yrogress’
o ROSI}er i and'o ois functions of many variables. In v;florvxlxziclie grese,
timization of contmlu as applied SA to timetabling and to t‘ e <:.1 e
e D aub};m lltter problem can be posed as a TSP ﬁn a,laI pural way
g POl locations corresponding to t:,he vel xcuh resources.
e d:l&mmg be implemented for timetaphng using t .er o
A csz:raints as the objective functlon.' T}}e nflay:; - difhoulty
violati'ons of the 'zoxl;le data structure to allow tl}e ob]f:ctlv«; suxll) o e
: clhOlt? edOfﬂ?ciZ‘:tl?r In an influential paper published in 1985, D.4.
evaluated e .

i idea of the ‘Boltzmann
j i (12] introduced the i . :
) 4 T3 Sejmovert | i i ich modifies the con
G.E. H lr:xtoandilinain-independent learning algorhlthm Kl;lcway difes the co
mad}me | ths between units of a ne.twork in su&cth e structure
necnon}(Sfi;mnlg es an internal model which captures fe]l nderlying siruchite
e exvironm i does not permit a full tr
i hile space does ment here the
low envuonn:lm;gin\l maypbe made. The Boltzmann machine is a
following gener

initially by J.J. Hop-
istri r' as developed initia
network or ‘parallel distributed processo
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field [13,14] and others. The machine is composed of elements called units
that are connected by symmetric links. A unit is always either on or off,
and it adopts these states as a function of the states of the neighbouring
units and the weights on its links to them. A unit being on or off is taken
to mean that the system either accepts or rejects some elemental hypothesis
about the input data (environment). The weight on a link represents a weak
constraint between two hypotheses. A variant of the transformation rule (4)
is used to modify the state of the individual units of the network so as to
bring the network to equilibrium at a given temperature. As always for SA,
the temperature is gradually lowered, resulting in (eventually) convergence to

combination of hypotheses violates the constraints implicit in the input data.
The reader is referred to [12,15,16] for further details.

Theoretical Results

The major contribution to the (very small) body of exact results about SA is
due to S. Geman and D.Geman [4] (November 1984).In o paper on Bayesian
restoration of noisy 2-D images they proved three significant theorems about
SA. Here it will suffice to state the three theorems; A, B and C and to dis-
cuss their significance. First, some notation is neccessary. (Some changes
have been made from that of [4] in the interests of clarity.) Let the state of
the system be specified by a vector z(t) with N components z,, The state-
generation process, (without loss of generality), can be required to alter only
one component of the state-vector z per update. Let {ns, t = 1,2,...} be
the sequence in which the components of = are chosen for updating, Then
{X(t), t =0, 1,2,...} is a random process which describes the evolution of
the system being studied, where X is a random vector with components X,,
and the evolution Xt — 1) = X(¢) of the system is given by

P(X,(t) =z,,s = L,...,N) =
(X, = 20, | X, = z,,s # ) P(X,(t—1) = 5,5 £ ng)  (5)
where IT = ¢=#V / 57 ¢~AU i 1o Boltzmann factor correspomding to (4) (U
corresponds to the energy E to be minimised.) Let the initial configuration of

the system be X(0), i.e. the initial distribution P(X,(0) = z,, s = 1,...,N)
is specified for the range of possible values of Z,.

it
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Assume that for each s, 1 < s < N, the sequence

Theorem A (Relaxation) for every starting configuration

{n, t > 1} contains s infinitely often. Then
t - -
n a;ld every possible state w,

0)
lim P(X(t) = w|X(0) = n) =1(w) (
" converges Lo II (the Boltzmann

In other words, the distribution of X(t) This s cssentially a

ardle X(0).
or Gibbs distribution) asl&-—» oolfe,g;rlil::s[s(])f (0)
rewordi the result in Metropohs Y . )
“'wgldllxl;gh(::tllg; notation is needed for Theorem B. Rewrite (5)

o1
= N) =
? t)= x4, s=1,..+, ) .
ree 11 ”)(X :- Ty | Xy = To, 8 7 t) P(X,(t-1) = To) 8 #ne) (7)
T(t nyg — In

IT on T, the temperature. The annealing pro-

= ...} for each suc-
dure generates a different random process {X(;l) ,tt 5 1,=2,{w }e i
cedure %emperature value such that (6) holds.ﬁ e ati(()ms e
ce.sslvz }}, that is, the minimum energy con gurd B e o,
inmfnl lgw tl;e uniform distribution on {lo. Finally, de
et llp be

U. = ming U(w) and & =U* = Us.

to indicate the dependence of

7 > N such

i there exists an integer
Theorem B (Annealing) Assume that iy

tha‘t tOI eie]) t D 1 2 ... WE Jlla"e 817"')8N} { 1’“‘t+2)"
{ h
) i Bias Bt} C “’t+

a) T(t) = 0asi— oo |
Eb) T(t) > NA/In(t) for allt 2 %o , for some to > 2

i i w in
Then for any starting configuration 1 in ) and for every ,

(8)
lim P(X(t) =W l X(O) = rl) = HO(w) .
e d does not
. ires that the update procedure
ition merely requires d imposes no
The first co.ndl ily low frequency as the system ?volves, an I;sonable
slow to an arbitrarily is trivially satisfied by any reh -
st i i lem. For the imag
ling schedule. However condition (b) is a majir Pr‘i‘ill: of ¢40000 u 1 dates
e blem studied in [4], for example, of the or de. First, condition
restoration pfic:ed to reach T' = 0.5. Some points can be mz;) e.a pirst :assary o
zvl;))u‘ld " I;;i:ient. condition for convergence, and may not be
is asu

Jimitations in practice. Condition (a)




28
IMS Bulletin 19, 1987

((:g?lwever, t};le physi'cal process of annealing requires very slow cooling, espe-
y near the freezing point.) Moreover, the modification of SA men’tioned

in Section 5 below due to H. Szu {17}, will, i
. , will, if ‘ i '
the performance predicted by Theireln B. 1 smccessiul, greatly fmprove on

Th . s .
imee(:rem>C (Ergodicity) As in Theorem B, assume that there exists an
ger 7 2 N such that for every t = 0,1,2,... we have {s; sy} C
yeeey

{nt41,n442,..., 144, }. Then for eve i
: : . ry function Y on () and f i
configuration n in (1, the ergodic hypothesis reveny starting

L1
Jm =3 ¥ (X(0) = [ ¥(o) dno) (0
t=1 0 :
holds with probability one.

The significance of this result is that time averages rather than phase aver-

ages, which are computati i
valu;s' putationally intractable, can be used to compute expected

Modifications of the Heuristic

Z?;:ll ::;dlgc;tlgns to .the basic SA heuristic have been suggested. J.W.
ncalng. They abierve that ot lon tomrommaen, oo oo e o o 2
because many candidates a;‘e rejected bi?gjeuresi ove ¢ tlme'ls o
This follows for two related reasons. First of a(;lacfl m’l‘f"e t;olla o Sta‘?e'
transition probability to states of higher energy 1; vzl; smﬁ )l\flhe e
temperatures, the system is likely to be in a state witi ilrr:f; :;m Sn::liov:; : (a;t l'ow
. o N
fojllt.:;i:;czsizﬁfai?atesthavmg lower energy. Greene and Supowit pﬁopiset;i:
(i o ) fro1ve tshmtegy. Let z;, « = 1,..., N, be the states accessible
joone moy whe:: he gurrent state of the system. Store w; = minl,q,
wi/E, w., m,ake ere 3},18 given by (4). Then choose state z; with probability
Of states,,generated A z:}r:ge of state.and re-c:fl'culate the w;’s. The sequence
e et y this method is p.roba,blhstically equivalent to the cor-
each time a move is re?::t:; t:ri l(:z’nii’dlf’f‘te repetgti?lns Pt Shave
\ ' . This can be de
using the notation of [18]. Let agr be the probabilityn;}?:lsztg?:e:cizrle?}‘::
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chosen move at temperature T, i.e.
1
OeT = 37 Z w; (10)

Then the probability that SA makes the move from state z to state = (say)
after some number of rejections is

el k 1 _ Wy {
l;)(l o) Nw'_NamT (11)

which is just w;/ ) wj, the probability of choosing z; under the rejectionless
method. The run time per change of state for rejectionless annealing clearly
has a value independent of the acceptance ratio, while for SA the value is
proportional to the reciprocal of the acceptance ratio. However the overheads
in terms of memory requirements and CPU for the rejectionless method are
large, so the method is only useful at very low temperatures. In numerical ex-
periments undertaken by the present author and a student, temperatures suf-
ficiently low to warrant the use of rejectionless annealing were never reached.
Another variant on standard SA is due to 1.0. Bohachevsky et al.[10]. In a re-
cent paper they propose using a modified form for the transition probability ¢
to states of higher energy (4). For problems where the minimum of the objec-
tive function @ is known to be zero (if the value is non-zero just use ® less the
known minimum value as the energy) they suggest setting ¢ = exp(—fPEAD)
where g is a suitably chosen negative number. The purpose of the modifica-
tion is to ensure that when close to the minimum, the heuristic is unlikely
to move a large distance away. No theoretical analysis of this modified SA is
offered but numerical experiments (on optimization of continuous functions of
two variables) are quoted which suggest the technique might be useful when
the value of the global minimum is known. For the more common situation,
where the value of the global minimum is not known, the authors suggest an
adaptive approach, starting with an estimate of ®min and modifying it as nec-
cessary as the search proceeds. 1t is not clear how effective this proposal is in
practice. Perhaps the most significant modification of SA is that proposed by
H. Szu [17] in 1986. As noted in Section 4, the result (8) due to Geman and
Geman [4] demands an unacceptably slow cooling rate for guaranteed conver-
gence to the optimal solution. Szu suggests an alternative approach which he
calls the ‘Cauchy machine’, in deference to the Boltzmann machine of Ackley
et al. [12]. In standard'SA the successive states of the system are generated
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from a uniform (or, more generally [15], from a Gaussian) distribution. In all
cases the distribution is of bounded variance. (The probability of accepting
this new state is, of course, given by min{1,q}, where q is given in (4).) In his
paper, Szu claims that using the Cauchy distribution, which has unbounded
variance, a cooling schedule reciprocal in ¢, rather than In (t), can be used. Un-
.fortunately only a rather unsatisfactory sketch proof is quoted and the reader
is referred to an (as yet) unpublished paper for a rigourous derivation [19].
'(Some numerical results are produced in support of his assertion.) However
if, as seems likely, Szu’s result is valid, the consequences for SA are majorj
An expon.ent;ially faster cooling rate will be possible, making the method far
more realistic as a general-purpose optimization technique than previously.

Summary

Simulated An.nealing, in various guises, has been in existence for five years and
}fas been applied to a steadily widening range of problems. With developments
like those quoted in this review, continued interest in the topic seems assured.
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On The Level
D.W. Lewis

We present a survey on the notion of the level of a field and its vari-
ous generalizations. We describe a lot of results that are attractive from an
algebraic viewpoint and also highlight the extremely interesting relations be-
tween algebra and topology that have been unearthed in the last decade in
connection with the level. We hope to persuade the reader that this is-an
appealing area of mathematics and that it should be a fruitful area for future
research. In Section 1, we look at levels of fields, in Section 2, we deal with
commutative rings and the link with topology and in Section 3, we look at
the non-commutative situation and generalisations of the idea of level.

1 TFields

Let F be a field. F is said to be formally real if —1 is not expressible as a sum
of squares in F. If F is not formally real we define the level of F', denoted
s(F), to be the smallest natural number N such that —1 is a sum of IV squares
in F' (We define s(F) = oo if F' is formally real).

The Artin-Schreier theorem [35, p.227] says that a field F' is formally real
if and only if F admits an ordering (i.e. s(F) = co if and only if F' admits an

ordering). ,
We look now at levels of some well-known fields

Example 1 F = R, the real numbers, s(R) = co.
Example 2 F = C, the complex numbers, s(C) = 1 since —1 = 12 in C.

Example 8 F = F, a finite field with p elements, p an odd prime. It is
a fairly easy exercise to show s(Fp,) = 1 if p = 1(mod 4) and s(F,) = 2 if
p = 3(mod 4). ‘

Example 4 F = Q,, the field of p-adic numbes. Then s(fy=1ifp =
1(mod 4), s(F) = 2 if p = 3 (mod 4). If F is the field of dyadic numbers then
s(F) = 4. See [35, p.151] for a proof.
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