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EDITORIAL

It is with great pleasure that we bring you this first Galway issue of the
Bulletin. Our first task must be to thank Donal Hurley, Pat Fitzpatrick and
Martin Stynes for the magnificent work they have done during the years the
Bulletin has been produced in Cork. We hope that the high standards set by
them will be maintained by us. Some continuity will be ensured by the fact
that Phil Rippon has agreed to continue with his editorship of the excellent
Problem Page.

As the reader will no doubt already have noticed, we have taken the op-
portunity of the change to adopt TEX as the typesetter for the Bulletin. Apart
from the ease which which it can handle almost any conceivable mathematical
text, and the pleasing appearance of the pages, we foresee a situation in which
a substantial proportion of the articles in the Bulletin will have been typeset
in TEX by the authors, and the resulting document sent to Galway in the form
of a TEX input file, either through HEANET or on a disk. Indeed, two of the
articles in this issue have been transmitted to us in this way. Apart from the
fact that this greatly expedites the production process, the author enjoys far
greater control over the final appearance of his or her work. However, we wish
to give an assurance that any articles submitted in the traditional typed form
will be given exactly the same consideration as those in TEX.

We wish to thank the members of the Mathematics department of UCG,
who have helped in many ways. A particular word of gratitude is due to the
departmental secretary, Carol Conroy, who took on so successfully the rather
daunting task of learning IATRX. Thanks are also due to Richard Timoney for
making his expertise in TEX available to us whenever we required it. All of
the faults, however, are entirely the work of the Editor and Associate Editor.




IRISH MATHEMATICAL SOCIETY
Ordiﬁary Meeting ' |

April 16, 1987

An ordina.ry‘ meeting was held at 12.15 pm at the Dublin Institute for Ad-
vanced Studies. The President, S. Dineen, was the Chairman. There were 8
members present.

1. The minutes of the meeting of December 19th, 1986 were approved and

signed.

2. The President reported on various decisions tken by the Committee, as
follows:

(i) It was decided to solicit opinions from all interested parties with a

.view to formulating a plan for the directions in which Mathematics
in Ir.eland should develop. Such plans have formed the basis for
significant improvements in other countries — the David report in
the‘USA and a more recent Griffiths report have been an effective
basis for improving Federal funding of Mathematical research in
the US, for example.

Anybody with opinions on how Mathematics (in Ireland) should
d.evelop or adapt to changing demands should communicate their
views in writing to the Secretary by the end of 1987, It was agreed
that the. Secretary and the President would also solicit views from
appropriate industrial and commercial sources.

(ii) The new editors of the Bulletin have decided to use the TEX typset-

(i)

ting system and would welcome suitable articles, in machine-readable
f?r:m, prepart?d using TgX . Authors intending to avail of this fa-
cility should ideally consult the editors in advance of typing their
paper.

?[‘he Committee agreed to hold a meeting of the Society at UCD
in Septem_ber, 1987, if arrangements could be made in time by the
Vice-President, F.J. Gaines. Part of the funding was available {from
sources in UCD.

3. The Secretary explained a plan agreed by the Committee to ask all Math-
ematics Departments at HEANET sites to set up an electronic address
for the Department. Such an address could be used to send electronic
mail to any individual in the department (including those with unknown
or non-existent personal electronic addresses). Departments are being
asked to set up this with a standard usename MATHDEP, if at all pos-

sible.

4. It was agreed that it would not be appropriate for the Society to lend
its support to the new International Campaign which has replaced the
former Massera, Scharansky and Orlov campaigns (these have achieved
their goals). The new campaign has the objective of bringing an end to
“all torture, abduction and oppression by agents of the Pinochet regime

in Chile”.

Richard M. Timoney,
Secretary




MEMBERSHIP LIST SUPPLEMENT

The followi
owling supplement to the 1986 Membership List was compiled from

t1
1e Treasurer’s records on the 25th of September 1987

Additions

87247 Tlood R.

87248
87249
87250
87251

87252
87253
87254
87255

87256

87257

87258

87259
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Dept. for External Studies, University of Ox-

ford, 1 Wellington Square, Oxford OX1 2JA
England ,

Dept. of Mathematics, UCD, Dublin
Dept. of Statistics, UCD, Dublin
B, 1/148-1-Ka, Assi, Varanasi 221005, India

]?ept_. of Mathematics, Towson State Univer-
sity, Towson, Maryland 21204, USA

College of Technology, Kevin Street, Dublin
College of Technology, Kevin Street, Dublin
College of Technology, Kevin Street, Dublin
Dept. of Mathematics, Research School of

. Physical Sciences, Australian National Uni-

versity, GPO Box 4, ACT 2601, Australia

;);lmwof Mathematics, Ohio State University,
1174, GSSLAIMh Ave., Columbus, Ohio 43210~
gc[')t. 0{ Math. Physics, Campus Box 390,
niv :

SOSOg’rsllngof Colorado, Boulder, Colorado
Dcpt’..- of Mathematics, Universilty of North.
Carolina, Charlotte, NC 28223, USA

Dept. of Mathematics, College of Arts and Sci-

ences, V.Vegt Virginia University, Morgantown,
West Virginia 26506, USA

87260 Conneelly M.
87261 Cullen H.
87262 Ilurley S.
—  McLoughlin J.
Amendments
85020 Kelly E.G.
85038 DBarry M.
85134 O Sé D.
85161 Grone R.
85163 Harary F.
85171 Porter T.
86168 Burns J.
86205 Lynch P.

Dept. of Mathematical Physics,UCG, Galway
Dept. of Mathematics, University of Mas-
sachusetts at Amherst, Lederle Graduate Re-
search Center, Amherst, MA 01003, USA
Dept. of Mathematics, NIILE, Limerick
Dept. of Mathematics, Maynooth College, Co.
Kildare (Student Member)

Dept. of Biostatistics, Columbia University,
New York, Ny 10027, USA (ex UcQ)

Dept. of Mathematics, Allegheny College,
Meadville, PA 16335, USA (ex Carysfort Col-
lege)

Regional Technical College,
Maynooth)

Dept. of Mathematical Science, San Diego
State University, San Diego, California, CA
92182, USA (ex Auburn U.)

Box 3 CU, New Mexico State University, Las
Cruces, NM 88003, USA

U.E.R. de Mathematiques, Universite de Pi-
cardie, 33 Rue St. Len, 80039 Amiens Cedex,

France
College of Technology, Kevin Street, Dublin

(ex Maynooth)
Meteorological Service, Dept. of Communica-
tions, Glasnevin Hill, Dublin 9

Carlow (ex




NEWS

Personal Items

e Professor Leroy Beasley of Utah State University in Logan, Utah,
is spending a sabbatical year in the Mathematics Department of UCD.
Professor Beasley works in Linear Algebra and Finite. Group Theory.

e Professor Jerome Sheahan of the Statistics Department, University
of Alberta, Edmonton, is spending a sabbatical year in the Mathematics

Department of UCG. Professor Sheahan works in Statistical Analysis
and Probability Theory.

e Roger Dodd is currently on leave of absence from the School of Math-
ematics of TCD; he is visiting Hiroshima University.

¢ Graham Ellis has been appointed to a permanent position in the Math-
ematics Department of UCG. Dr. Ellis works in Algebraic Topology,
Homological Algebra and Algebraic K-Theory.

o Pat Fitzpatrick is on leave of absence from the Mathematics Depart-
ment of UCC for 1987/88. He is spending the year at the University of
Toulouse, working with the group there on Algebraic Coding Theory.

e Ciaran Murphy, formerly of UCG, has joined the Statistics Depart-

ment of UCC. His particular interests are Operations Research and In-
formation Systems. '

e Russell Higgs has been appointed to a permanent position in the Math-
ematics Department, UCD.

o P6l Mac Aonghusa has been appointed to a temporary position in
the Mathematics Department of Maynooth College.

e .Philip Murphy has recently taken up a Department of Education Post-
doctoral Fellowship at TCD. ‘
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o Martin Newell is on sabbatical leave from UCG for 1987/88. He is
presently visiting the University of Padua.

e Aongus O Cairbre has joined the staff of the College of Commerce,
Rathmines, Dublin.

e Noel Gorman has taken up a temporary position in the: Scho?l of
Mathematics of TCD. Dr. Gorman is on leave from the Dublin Institute

for Advanced Studies.

o Daniel O’Regan has been appointed to a temporary position in the
School of Mathematics, TCD.

o Anthony K. Seda is on leave of absence from UCC for 1987/88..He w1§
be visiting Bristol University, Imperial Qollege London and Edl.nburgd
University to join the groups there working on formal programming an
the use of formal methods in the specification and verification of soft-

ware.

e Eamonn O’Brien, a former UCG student, now studying at the Aus-
tralian National University, Canberra, was awarded the‘B.H. Neumann
Prize for the best student lecture at the Annual.Meetmg of the Aus-
tralian Mathematical Society in May 1987 for his talk “A Computer
Based Description of 2—Groups”. .

e Micheal O Searcéid was awarded a Ph. D. in Matl}ematics ab UC(C;
in June this year. His supervisor was Professor Robin Harte. Dr.‘
Searcéid has now taken up a permanent position in the Mathematics
Department of UCD.

o Martin Stynes of the Mathematics Department, UCC, lfas been in-'
vited to give a keyndte lecture at the BAIL V Conference in Shanghai

in June 1988.
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The Irish Mechanics Society

igs:iﬁgnof 'ttl;e (I)rish MeIchanics Group was held in UCD in September in
with Campus Ireland. Participants came f i
and Ireland and eleven e dorileg s Canada
papers were presented. It was decid
o - ' _ , ecided to rename th
drl:v:,?: :: 'illxs i::]fli Igec%}z:m;:is Society, a constitution for which was formalI;
ified. The first official i i i
conforence in UOC 1 Mar- o0y 1al meeting of the new Society will be a

Irish Winner in International Contest

Fn 3 3 o e ‘
5 (l)rlit;nplege in the.LOGO Division of the International Computer Problem
So gu f;n ests this yea:' was awarded to 11 year old John Farragher, a sixth
o M}; r}}’nI r:; : t.l Ealél silPrugary School in Limerick and a partic;pant in
culate Co j i i
Motheny ege Computer project for children of high ability in
con'in‘I}:e Irclltfarnat.ion# Contest is organised a.nnually”by the University of Wis-
consin :Sn Tlfl m'a,nily 'mvol;'es computer programming problems for second level
- 1he inclusion of a LOGO Division for child d i i i
year’s Seventh Annual Contest incroasing ue [preen n thi
reflects the ever-increasin
' : : g use of comput
?Ori‘dt It'.he pgrtml.llar mterest in LOGO in primary schools. A LOGO Dir\’rlilsieorrj
A i :
Jo; I:n‘lv :.sr :;ﬁtielcll ag;: gr(;;lp is planned for inclusion in the 1988 Contest
' cted when Dr. Pat O Sullivan asked al inci i
I _ . asked all school principals
m::ﬁ:;k Slt)lr to 'ssfmd two or three sixth class children of higher than aI\)rera;el
mathe atica 'abxht;y to the College for testing. Dr. O Sullivan was organ-
Imn%acxi stpeélal LOGO. pr?Ject for mathematically bright children for Mary
oot D;lu:u(:a gllegejw]hlch is conducted in association with St. Patrick’s Col
ondra. John was one of the eight i ¢
t : ghteen children who came out
tﬁigslc:egmxfl)g tJpg)cgss and undertook an eleven-week intensive LOGO :ctlur;)j
it by Pa ullivan and Dr. Gerard Enri i
. . ight. In April he and fell
pupil Ryan Meade entered a in " the In.
D Sreade « s separate teams at the Dublin venue of the In-
Th i
Holy I:a;:tohntées}f was in the form of a two-hour practical examination held at the
Sty ot Irzlaoo; 1];1 t};\; Co;\)/Imbe and organised for the Computer Education
nd by Mr. Michael Brady. Using C
! 8 g Commodore 64 comput
equipment, John solved the five problems with which he was presentI:d fl:

NEWS

about an hour and a half and he spent the remaining thirty minutes checking
his solutions. John Farragher won that event, Ryan Meade was placed third
and John’s entry was sent to the University of Wisconsin for ranking amongst
ates and from several other countries.

370 teams from all over the United St
hn and with the Irish section

A few weeks later everyone associated with Jo
was delighted to hear that he had won first place in the world.

The Computer Education Society of Ireland has been active for many
f computers in schools and in recent years
encouraging such development at primary
hrough its Department of Mathematics
1role in this area of curriculum

years in the promotion of the use o
it has paid particular attention to
level. Mary Immaculate College, t
and Computer Studies, is also playing a centra
development. The College provides courses not only for its own undergraduate
students but also for practising teachers in the Mid-West Region. It also
rogramme of experimental research with local school
hers’ course for a Diploma in
alyst in primary school

undertakes a major p
children and it has initiated a ome-year teac
Computer Studies which is acting as a very effective cat

activibies.

The Harte’s A Wonder

Marcel Dekker recently published “Invertibility and Singularity for Bounded
Linear Operators” by Robin Harte, price $119.50 (ISBN 0-8247-7754-9). We
quote from the author’s own description of the contents:

The Doctor tells all: Normed spaces as you have never seen them

before.
Out of the Closet: Almost open mappings and the boring truth

behind the Open Mapping theorem.

Enlargements: Linear operators laid bare.

Compact Operators: Small but perfectly formed.

Fredholm Operators: Algebra is no laughing matter.

Almost Exactness: A contradiction in terms?

Joint Spectra: Joseph Taylor and his technicolour dream-coat ...

The book will be reviewed in a future issue of the Bulletin.




.Summary of Results of the 1987
Irish National Mathematics Contest

The ninth Irish National Mathematics
1987 and attracted more contestants tISsO I}lrfazsrt :}V'l:i}::l(’ivznhT; edeay,  March,
In all, 1,832 participants from 81 schools took part, ¢ i 1 gy ears.
75 schools last year. ) compared with 1,342 from
As in all previous years, the paper for thi !
MAA Com.mittee. on American Matliematics goﬁzl;fitlifx ij W:»}S S A
nual American High School Mathematics Examination whiolf A
up to in0,000 to the MAA Committee for allowing us to ’use tlc ir o ta'ken_by
materials. 1ol examination
The new scoring system that was int ;
again .this year. This system, which is intzzg:c;eti i‘aes\at'a}rlfla;ntvzﬁs' o OPeTat'iOIl
'and @scourage random guessing, also tends to yield higher m Iigenft PR
in this year’s INMC than in previous years. Altogether 234a:t sdo b marks
85 or more m.arks this year, while, of these, 128 scoreél 90 o o scored
more than twice the number who fell into this category last e A ks,
of 100 or greater was achieved by 22 students. We are ve lyear. A o
en'thusmstlc response from the schools to our invitation tf)y P: e tl‘l ‘
this year’s contest and with the high standard attained b ey students in
of contestants. ¢ by such a large number
The highest score in this year’s INMC i
School, Rathgar, Dublin 1. Alan got 118 vrvna:r(l){]s),t a::ejxlc)f):(ll‘:rlxzn Comwey, High
114 were achieved by Patrick Browne, also of the High Sch Sclore. peore of
Byr'_l[l‘ﬁ o; Si:l Benildus College, Kilmacud Road, Dubling14 ol and Fergal
e highest team score—the sum o i . o ds
contestants from the same school——-wasfaf:llljei]ziei))lrusg:legeicizes (())flndWidl.ml
ascore of 328. The High School in Rathgar was second ;vith 321us Oll?ge it
School, Dublin 1, a close third with 319. The winning te and O'Connell
Fergal Byrne, Garrett O’Neill and Damian Lawlor § team was composed of
A prize-giving ceremony wi :
top scorers in thg INMC. Y will be arranged early in December to honour the
Future issues of the Bulletin of the Iri i ;
Newsletter of the Irish Mathematics Te;gj:arlswi;:si?'a?'cal S(’)Clety 2nd the
information about the contest. tation will carry more

10

INMC 1987 11

“The Fifth Irish Invitational Mathematics Contest was held on Tuesday,
March 24, 1987. To keep the numbers down to manageable proportions only
those with a score of 90 or higher marks in the INMC were invited to partic-
ipate in the IIMC, exam materials for which were also supplied by the MAA
Committee on American Mathematics Competitions. The contest was espe-
cially difficult this year, the hardest it has been since its inception five years
ago. The top scorers were: Fergal Byrne of St. Benildus College, Dublin, John
O’Brien of Presentation College, Cork, and Andrew Farrell, a twelve-year old

from Navan, who each scored 5 out of a maximum of 15.

Finbarr Holland, University College, Cork.
Tom Laffey, University College, Dublin.

IMS MEMBERSHIP

The Ordinary Membership subscription for the session 1987/88 is £5. Pay-
ment is now overdue and should be forwarded to the Treasurer without further

notice.

Institutional Membership is available for 1987/88 at £35. Such support
e Society. Institutional Members receive two copies
and may nominate up to five students for free

is of great value to th
of each issue of the Bulletin,

membership.




Letters to the Editor

Should people be Paid to Do Research in Mathematics?

Most . . . .
Yost ?I?:te}z::;iliigi z;iloiilr;mngxat t;}tlerc;] is a sense of achievement in having
pade 2 . , no matter how small. Thisemotion a i
factofjlfr‘:rt;;)o?:m ntlhz hrespec‘t of other mathematicians are the inner m?gfav:illtg
e O ol gcte;m:@atlcal research. A more materialistic motive for doing
that o i gk b 1lng adnumber of papers published lessens the likelihood
b L be ployed for long. Thus research mathematics shares thi
with many other occupations: if you’re good at it, you’ll feel go:;

about it ) .
Personaltl r:z:iig(::l} . f]et : gozd job out of it. It does not follow from this
ation that workin s
a good thing, g as a research mathematician is necessarily
Matl ics i ; . ’
ing. Clel:rr?atlcs 1s an important tool in most of natural science and engineer-
e Samey one would expect mathematicians to be paid for their servic
Heromen & \;vay as labor.atory technicians and bricklayers are. But there j .
resale T etween applying the results we know and trying to find out o
: € questions begs itself: do we need to know any m u new
— (il;il}]: t we make do with what we hayve? ‘ y more mathematics
ere is )
mathematica?j- reaso? to s1.1ppose that mankind will perish without further
Jincons 2 hesearc 1. This does not mean that some future mathematical
. do;’:’ s!:r]fe t“ not ,l,)e useful}i nor does it deny that a mathematicianavlzchao
pure” research wil .
mathematician. il usually be a better applied and teaching
Howev. i
desires rezlgaf:;en t}tl]at tec%mOIOgy has outstripped man’s needs, if not her
) mathematics is becomin 1 ’
mankind i . . '€ 2 luxury good. Its benefit
tn general are increasingly marginal and we face the question'sa::

we justified in payin ici
g mathematicians to do rese
when over half the world’s adults are illiterate? preh and attend conferences

Brendan McCann,
Department of Mathematics,
University College Galway.
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" Dr. Martin J. Newell (1910-1985)

Scan Tobin

The signature Mdirtin O Tnathail appears Promincntly on the very fine
silver salver which was presented to President JSamon deValera, to mark his
Golden Jubilee as Chancellor of the National University of Ireland, in De-
cember 1971, The salver is now on display in the Presidential Room of the
National Museum—and it must have been very agreeable to Lamon de Valera,
who maintained a lifclong interest in mathematics, to have on his memorial
salver the signatures of two mathematicians (the other being that of Dr. Donal
McCarthy, President of 'U.C.C.) as pro-vice-chancellors of the University. Dr.
Newell’s signature is firm and very clear, and this fits well with salient charac-
teristics of the man himself: clarity of expression and firmness of decision, two
qualities which became especially significant during his tenure of the Presi-
dency of University College Galway, from 1960 to 1975, when the course of
university development was charted for many years to come.

Martin J. Newell was born and bred in the heart of Galway, where his
family lived in Shop Street, one of the old central streets which still preserve
the outlines of the mediaeval City. He was educated there in St. Joseph’s
College and in 1926 he entered University College Galway, taking first places in
the County Council and University Entrance Scholarships. A brilliant career
as a student was crowned with the award in 1930 of the M.Sc. Degree in
Mathematical Science (with first-class honours), and the N.U.I Travelling

Studentship. This brought him to Cambridge for three years in St. John’s
College, where he studied for the Mathematical Tripos.

In 1933 he was appointed to the staff of St. Michael’s College in Listowel,
and in 1935 he returned to Galway as Lecturer in Mathematics (through Irish),

 in succession to Eoghan McKenna who had become Professor of Mathematical

Physics. Incidentally his own successor in Listowel was James Callagy B.A.,
they had been fellow-students at U.C.G., where they shared an enthusiasm
for geometry.

In 1950 Martin J. Newell was appointed a member of the Governing Board
of the School of Theoretical Physics at D.LA.S., and he continued in that
capacity until 1965. In 1952 he was awarded the degree D.Sc. by the N.U.L

13
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for his published work, and in that
Royal Irish Academy.

In 1955 he succeeded Michael Power as Professor of Mathematics in U.C.G,;
he himself had no direct successor since — on his recommendation — the Col-
lege extinguished the monolingual Lectureship in mathematics and established
a regular Lectureship instead. About this time also a successful operation re-
stored his hearing (he had been troubled for some years by an increasing
deafness) and so in 1955 he entered on a new phase of life. This was a time

when the Irish university system, dormant during World War II and its after-
math, was itself quickening to a new life.

research workers were recruited, and in gen
to exert more influence on policy. Sympt
of staff associations, U.C.G. being well to the fore. In all of the new initia-
tives Martin Newell played some part, and he was chairman of Cumann Lucht
Teagaisce an Chol4iste when that body arranged the presentation of a brongze
bust to Monsignor P4draig de Briin, to mark his retirement as President of the
College. (This fine portrait bust, the work of Cork sculptor Séamus Murphy,
is now in the U.C.G. Staff Club.)
An even greater change was to occur in 1960 when Martin Newell, a sur-
prise candidate, succeeded Pidraig de Brin as President. He was the first
native of Galway to hold that office, and he brought to it a high sense of pur-
pose and integrity — in private he said that his guiding principle was “Only
the best is good enough for U.C.G.P" His lively sense of humour and ready wit
combined with unfailing courtesy, which made him welcome company in any
social gathering, helped also to lighten the burden of the many committees
which he was called on to chair.
His Presidency coincided with a period of great expansion in the Irish
economy, and so he was able to bring to fruition plans already begun under
Monsignor de Brin for major new developments. His period of office, from
1960 to 1975, might well be termed the Golden Age of U.C.G. Student numbers
more than tripled, extensive new lands were purchas
range physical development plan was established, a
complex was built, staff numbers increased greatly
were introduced.
Dr. Newell was well-regarded also in the larger academic community, and
in 1971 was awarded the honorary degree of L1.D. by Dublin Universit
"recognition of his achievements. He maintained his interest
and took a partial Sabbatical from his administrative duties in

year also was elected a member of the

New courses were planned, young
eral the staff in universities began
omatic of this was the formation

ed for the campus, a long-
new Library and academic
and many new disciplines

y in
in mathematics,
order to prepare

and hearty, and whose friendship is treasured by ¢
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Dr. M. J. Newell (1910—1985)

- q.
blications [7], [8] and | '
pu After his ea’rly relirement n 19175, for }'1enuy O I swmmer.
ith 1 { wavy hair was only occasionally 8 . et
W_‘(‘]‘ " ?h:d; (ivere s);)ent in Spain, summers in his lakc.asxde l:;)uztiaa:? Itpvl\)[as
o l- "(‘;m rei;) which was appropriate for a lif?long anglmguen Lue ! lea'_med of
L‘_)“g : doz s,ensc of loss and sadness that fm?n(%s and XO te:;glgn ety
W.“'h zzld:npdeahh goon after his return to' Spa.m in the Au :nd e hed
bty brough,t Lome to rest in his native c1ty;. the large o
bOdy(Iv o e at funeral ceremonies in Dublin and in Galv({uy Y:. e
o mt;lc the affection and respect which he had earned ove '
timony to
! . o is fri could
o Sle\lrwce . hilzt(';zx‘xl ofyBrod Newell, as he was knOW}Ill t? llus f;;f;ii’iu ou
S olete - i is wife Noreen who 1s hap
be complete without a tribute to his wile R R0 e D e had thef
1 i keen sense o
i She too is blessed with a :
rivi wing her for many years. She e
i)l e :.flgli:as atl;ways the soul of hospitality to stludelltllt;s a,nntt :ibauted oty
atant n for his health co
t and her careful concer on d greasty
constax‘}t S‘:)I;fl(:ll;s success as teacher, researcher arfd 'admll\;[l'lslt;rala:‘imi\,/I T
. ht? rcl u;appy family life for their five children (Sinéad, Michael,
created a |
P les i d has arisen
Eané?nn at,lii poresgnt healthy state of algebra studleds hL:n I:zg;tel; e
largellr;'c;eca.use of the impetus given Il\)z' I\;I'.J .LNeIV]v:slflellow :zl shis e Doy
it i d that his son, Martin L., .  eine
o pll;asantozeos:zioi; the U.C.G. department of mathematics and well-kno
i a pr . ;
- tioII)xa.lly for his research work in group theory.

alth reasons, his tall spare figure

interna

A Personal Note

joring i ical Science in U.C.G., I helped Brod
N maJ??o%n?oi\dlfiih;:;::;il-actually, as it l.lappens, ir;l tilel S‘:::;
Newell to proofrea riting these lines. It was due to his‘mﬂuence t ;I )
T e at.m Vt‘:ucl algebra (in fact group theory with Graham :ﬁe an) ;
. Manc}'leSter OtSI rgturned to Galway from the U.S.A. to becor:e e firss
B 1“5' req“ei atics at U.C.G. I owe more than I can say ? e
e o & mtl'n uing friendship, advice, encouragement and km;pf b
to Noreen for c(?nclenthen. One of his old colleagues, whom 3 a; teh . ;:that
Over'flhe zl(e:;ns"xz; of Brod, said “He was always a gentleman”. in
considere
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this is as :
good a summing- .
anam dflie Ing-up as one could wish for. Ar dheis D¢ go raibh a

Mathematical Work

of the contributors
. to Mathematical N
in the 1932 M : 1cal Note No. 1031, on A ds
difﬁculty of P::\Eliflmz:;lcal'(;azet?e [IJ This note con’lmences aiq;:llli) COTW“CVSB,
are equal [in longt E] t;lat 1ft ]thet [internal] bisectors of two angles of :V:;I"_ Tlie
. en the triangle is i : langle
simple proof; . . . g 1sosceles is well kn . .
argument b:szfleog,iven In this note.” The first proof is . ewe]l?s‘fn;’uitt}:ee .falrlly
an Imngenious const i . : a simple
student days il’l U . I‘llCtlon—pOSSIb]y a carr .
articles in the LaéC;G. Incidentally, the other two proofs werg (:l‘;: frgl? bie
the com “ y’s and Gentleman’s Diary, 1859 and 1 ved irom
C -melllt well known” was well founded ’ nd 1860, showing that
uriously enoUgh despi .. N ) . - ‘
. pite his incli
tin Newell’s ’ . inclination towards classical
theory, a vir?:::)lsiorte :‘Vas In combinatorial algebra. He was aamies:metfr 4 Ma‘r-
evident in—and iné)erdol‘mer of PO.I)’nomial calculations. These e;(l)_t{natnx
[9]. Some of these eed are the basis for—his published research e
(“A University Algeg::”r; S[TZ)]S]“;W through also in his book Alge%ife;:l " F;lo
. where Laplac d A scoile
space with tl f place and Cauchy ex :
= beoutifil teorems of Jordan and Binet-Cauchy on Y expansions jostle for
p ifu 1[y concise exposition. ¥ on compound matrices, in
apers 2] to [7] inclusiv i
tation theory derivs ¢ are in the classical tradition of
original an(;y oftirIVI;Ig from Frobenius and Schur ; they consisl:g 20“5}’1 i
Littlewood or M : e eglant proofs of known results, most of whi::lh : HZ{am of
alized, and metho:]];afr;mgl: In iome cases these results are extendedazr g::l e
: : iven implifv: . er-
in their development. or simplifying tedious calculations which arise
References [A]
and [B], as well
Newell’s papers: ’ ell as the later [C], give th
but, for tﬁosee I:rilas tex'ts they make difficult and at]’times frtfstl;af}ground' v
nius - Schur resuﬁ; o ]]I; teres_ted _in sampling the original flavour Zfl Itl}g r;«‘idmg
book [E] oo si,)a eautiful introduction is given in Walter L dle Ob?-
material is no lon | ]}clovers roughly the same ground as [A] and ”ea EII‘)mann‘s
ger the sole concern of texts on group representati b tlllf this
mon eory;
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for insbance Walter Feit’s recent book | ignores it, being concerned entirely
H

with modular theory.
In the years 1948-50 Martin 7. Newell wrote up and published, in five

papers [2] to (6], results which he had obtained over the previous decade. The
first of these is in some ways the most elegant of the series; he commenced
by remarking that while the quotient of two alternant determinants had been
much used, the quotient of two alternant matrices had not been exploited -
an omission which he proceeded to rectify, by showing “that consideration of
mple proofs for most known theorems”.

Some definitions will be useful, to explain the thrust of his work. Let

.,y be a sequence of n indeterminates and let (t) = (t1,t2,+.+tn)
negative integers ty > 2 >+ >ty >

the quotient matrix furnishes si

01y 02y ee
be a strictly decreasing sequence of non-
0. Let A(ty,...,tn) be the alternant matrix whose (

terminant |A(t)]is an alternating polynomialin e, ..., an; in particular when
ty =n—1itis Vandermonde’s determinant. Let o and h, respectively be the

elementary and the complete homogeneous (Wronski) symmetric polynomials
of weight r in the indeterminates c1,...,Qn where r > 0; define hy =0y =0
if i < 0. The key result in [2] is the following:

For any positive integer s, and for 1 < k <n,

i,7) entry is o, The de-

ap, = (Ro—n+1,ho—nt2s--- h,]Q[ak_l, T 1)

where the dash denotes transposition and @ is the matrix

¢i; = (—1)"—“03-; . (Thus |Q] = 1).

From this it follows immediately that
A(tl,tg,... ,tn) = BQA(n—- 1L,n— 2,...,1,0)
where B is the matrix bi; = ht;—n+4-

Taking determinants we see that

|A(ts, t2, -5 ta)l _
1.0 P

This is the classical Jacobi-Trudi equation, and that is Newell’s proof of

it.
Now clearly |B| is 2 symmetric homogeneous polynomial, with integer
A =t;i+n—1i,1<7< n,then | B| has degree

coefficients, in. a1, ¢2,. .., @n- I
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Mt + -+, =m say, where Ay > X, > ... 2 An > 0. The sequence
(A) = (A1, 22,...,2,) gives a non-increasing partition of m; reversing the
procedure we might now, given such a partition (A) define t; = X; — (n — 7)
thus getting a strictly decreasing sequence (t). The corresponding polynomial
[B[ is known as the Schur Junction, or S-function, associated with (A) and is
denoted here by the symbol {A}. These functions {2} play a central role in
studies of the characters of the symmetric groups S,,, as also in the character
theory of the real orthogonal and sympletic groups.

The study of identities which link S-functions and other basic symmet-
ric functions such asg oi,h; and the power-sums 8 = a‘i + -+ afl, the
study of rules for expressing given symmetric functions of Q1,...,0Q, in terms
of S-functions— hence e.g. rules for calculating the coefficients Irpr Where
{AHe} =T, gau{r}: these are the subject matter of the papers [2] to [7].
Possibly the strongest influence of this work is to be seen in Murnaghan’s book
[C] based on a course of lectures which he gave in 1957 at the Dublin Institute
for Advanced Studies. In the preface he refers to considerable improvements
upon the exposition in [A], and mentions “for instance, the treatment of the
modification rules for the rotation, sympletic and orthogonal groups, in which
I'have been able to use with great profit the ideas of Professor M.J. Newell.”

Already two years earlier, in his lectures to the 1955 St. Andrew’s Collo-
quium, Philip Hall had cited Newell’s work — I am indebted to Ian Macdonald
of Q.M.C. for this reference. Hall was discussing the proof of certain key prop-
erties of Schur functions and remarked that “a particularly elegant derivation
of the central theorem, and of many other important formulae” had been given
a few years previously by Dr. M.J. Newell. (In fact Newell was present at that
Colloquium, and must have been pleased with this complimentary reference to
[2]. Subsequently however he expressed more interest in the fact that, having
gone to speak to Hall after one of the lectures, he had noticed on the margin

of Hall’s manuscript a pencilled note “Joke here” followed apparently by an
outline. He was surprised that the eminent Cambridge group theorist should
(a) think a joke necessary during his lecture and (b) need to write one down,
This illustrates a fascinating aspect of Newell’s own character, namely the way
in which he combined apparently contradictory traits. Thus he himself, quick
in repartee and a good raconteur, would never have needed to write down a
Jjoke — yet on the other hand he never, to my knowledge, made a joke when
lecturing.) ' ‘ ‘ ‘
The last paper in this series, [7], deserves special mention, being Newell’s
only joint paper (his co-author was a long-time associate, Rev. Professor
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i i is term of
i i d published during his
ILA.S.); it was written an his term ¢
e Mcco'nnen 0§ II; C.G zt: makes effective use of the concept of c.on]ugualt:
e e etion 'ax;d 1’t was written in order to prove fully certain res

i d to be
“when looked into . .. are foun
e e D e ntial gap, and represents

symmetric functions’[’ , |

iven by Littlewood [B . .
igxzzlrlnp)lrete” . Tt is a substantial paper, filling a substa
perhaps a final act of pietas.

Il)e FEI'F ers 8 a'll:l E] ELISO aI:I: 35‘:15:1 11113 II']‘ I € au as IIESIdEHt,

i i ich had interested him previou.sly.
- ex}libi; e ;V:vl\;k:‘.l;g;?cl}l)iei lt(ifeasdi‘gzlrli:lllinant (necessarily.no;—r;:g::,t;:'l;z])1
Io]; t[lti léiasra::veiistic equation of a rez;l sym;nztzrlfll; r><ixn A}nzil;lrclﬁ b s
o squarris‘gg I'nifnors f‘;‘:"‘; il:izcizgi‘:easrtz an old theorem due t‘? Kulx::lxirlllesr
iy ) L [9] is an application of algebra to a problem in cal " s.
(1045). Tho ine Pa‘Pe; continuously differentiable funct.ion. of n real van; aji é
g F(::lll;xrf;turé Z?)alzﬁationary point is (h opefully) g:t;;rg;n;i .by a;xl :llli:h erther
1en . . . Qir = 1- j, v
form; the I.na,trix.’; (’;"fxfilsés cf:rxrz):s':m);nb:lg};ciged directly by examh}mg( :II::;
t!le fmi? fr sel)m;f ethe leading principal minors of A. kAlllleiI::;)Ez;lz land
ape N i re are n—k a :
asparently ) crit;llo I: fé’rntl:ekcaize(;re?;/reedﬂ\:ry neatly in [9], and here z;fga;:l
ei(a1, Lt zn) =0 sfons?lue to’J acobi and Laplace are used to. great e ;cr i;
e e t;timll( his responsibilities as Lecturer through IrlsI}r l\iery sere
T 03 textbooks on algebra, calculus an.d ggometry. ) e:seIriShO
Ous'ly, o Prepgf the Government agency for pubhcat’lon of boo ilmfoun (i
e And urilc’ulus texts were published but An ‘Gum'appareiln yalculus
:}lie aleg;]:l::rzntozaunorthodox and it never appfe:;ze(ihm 1;1;1::2 a’z_‘ [; é .
. 1 r of Mathem C.G,
o o Mlc}laii(ioctil}‘l’og};j: Er}felilsc?st noteworthy b'ook wa(s} Aﬁei’t;a;
co-aut:hol‘ and v{:il:hqwas used regularly by honours classes‘ in U.C. d Jiis e
IOl'sco'lle o :V to classical algebra with a minimum of jargon dar.xt 2 max
P”ef mtfr (i)lcllflcl)inll(::ion, and is still treasured by those who acquired 1
imum o

first university-level text in algebra.
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ARTICLES

Simulated Annealing — New
Developments in Combinatorial
Optimization

John A. Kinsella

Introduction

I?S;?fmator@l .C)l;‘)b%mization (CO) may be defined as the problem of maxi-
oo ng1 (o.r minimizing) some measure of utility (the objective function) of a
which I‘WIFh a large bl.lt ﬁnl'te number of states. There may be constraints
Perts imit the domain which ml'lst; be searched for the optimal solution.
o 0}f>s th.e best knov'vn example 1s I‘nteger Linear Programming, optimiza-
of lins a linear functlon of a set f)f independent variables subject to a set
boger Car constraints and' the req}urement that the solution vector have in-
of partf)mponents. Special techniques have been developed for the solution
importlcular CO probl'ems, su.ch as the a?)ove example, but there are many
X reasoanc pro‘b]en')s (timetabling, S(illedullng) for which an exact solution in
of O nable time 1s'not; always possible. More precisely, there is a large class
that if Problems. which are kn?wn as NP-complete. NP-completeness means
polync an.y a:lgorlthm exists which so'lves a problem in a time which grows as a
also solm;)al In N (a measure .of the size of the problem), then all of the set are
Intoger I}J’le in polynomla! time. E?x'am'ples of NP-complete problems include
Sume or inear programming, partitioning a set of integers into 2 sets whose
the o et equal and the wefll-kn.own jI‘raYellmg Salesman problem (TSP) (find
cigniis rtest tour or Hamiltonian circuit fo'r a set of coplanar points). The
. NPance of the idea of NP-COfnpleteness is that many important problems
nown ~c1<)m}?lete and therefore, in a 'sense,.equa.lly difficult. In particular, all
in th algorithms for the TSP run in a time that grows as an exponential
e number of cities in the tour. For this reason, rather than from any
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often used as a benchmark for comparing heuris-
oximate solution of CO problems. An important
“iterative improvement” methods.

intrinsic interest, the TSP is

tics, techniques for the appr
class of heuristics are known collectively as
The heuristic begins with the system in a particular, often randomly chosen,

state. A rearrangement operation (such as 2-OPT for the TSP [1]) is applied
randomly until a new state which reduces the objective function is found. The
new configuration is adopted and the rearrangements continue until no further
improvements can be achieved. Often the heuristic will get ’stuck’ in a local,
rather than the global, minimum so it is neccessary to use several different
initial states and adopt the best final result. In fact, the problem of sticking
in a local minimum is not confined to CO, gradient descent and Newton-type
methods used in continuous optimization suffer from the same defect.

Simulated Annealing

A more systematic approach to this problem was proposed by S. Kirkpatrick
et al.[2] in 1983 based on the Metropolis algorithm. N. Metropolis et al. [3],in
1953, proposed an simple algorithm for the efficient simulation of a collection
of atoms in equilibrium at a given temperature. The following exposition of
the Metropolis algorithm follows that of S. Geman and D. Geman [4]. Let {1
denote the possible configurations of the system in question; for example w in
Q) could be the molecular positions. If the system is in thermal equilibrium
with its surroundings, then the probability of w is given by

, e—ﬁE(u) .

P(w) = -z—::;-_—ﬂ-ém 3 weN (1)
where E(w) is the energy of the configuration and g = 1/kT where k is
Boltzmann’s constant and T is temperature in degrees Kelvin. The quantities

to be calculated are usually ensemble averages of the form

‘ w)e=PE(w)
)= [ ¥ drlo) = 25 S )

where Y is some variable of interest. This expression is analytically in-
tractable. In the standard Monte Carlo approach, one restricts the sums
above to a sample of w’s drawn uniformly from 2. This approach fails in the
due to the exponential factor, as most of the mass of the distribu-
of . In other words, for satisfactory

present case
tion is concentrated in a very small part
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accuracy, excessively large samples are needed. The technique introduced in
[3] was to chose the samples from P instead of uniformly and then weight the
samples uniformly instead of by dP. In other words, one obtains w,..

s WR
from P and the ensemble average for Y is approximated by
1R
V)~ 23 Yw,) )
r=1

The sampling algorithm in [3] can be summarized as follows. Given the state
of the system at time ¢, say X (t), one randomly choses another configuration
X' and computes the energy change AE = E(X') —E(X(t)) and the quantity

9= P(X')/P(X(t)) = P47 (4)

If ¢ > 1, the move to X" is allowed and X(t+1) = X', while if g £ 1, the
transition is made with probability g. Thus, one chooses 0 < r <1 uniformly
and sets X(t+1) = X' if r < gand X(t+1) = X(t) if r > q. Metropolis et
al. prove that starting from an arbitrary state, repeated application of this
algorithm produces, in the limit of arbitrarily many applications, a sequence
of samples from a Boltzmann distribution as stated above, In (2], Kirkpatrick
et al. proposed applying the Metropolis algorithm to CO as follows. First
select a technique for randomly selecting new s
For the TSP a widely used technique is Lin’s 2-OPT, essentially taking a chain
(of a given length) from the current tour and inserting it (possibly reversed
in orientation) between two successive points in the tour. Again for TSP, the
appropriate 'energy function’ is the length of the tour under consideration, for
a timetabling problem the energy might be the number of clashes or irreconcil-
able assignments. The transformation rule (4) is then applied repeatedly until
approximate equilibrium is reached at the temperature chosen. The combina-
torial system is first ‘melted’ by being allowed to reach equilibrium at a large
value of T. The temperature is then reduced gradually, allowing the system
to reach a steady state at each discrete value of 7' chosen. This decreasing
sequence of temperatures is called an annealing schedule by analogy with the
slow cooling- annealing- of a melt of 3 physical subst
itself is called Simulated Annealing (SA) for the same reason, Note that for
large values of T (small values of B) new states which increase the energy are
likely to be accepted, while for small values of T such uphill moves will be
rare. This capacity to escape from local minima is what distinguishes SA from

tates from the current state.

ance and the technique
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intuiti that cooling must
ical intuition suggests :

. . ive improvement. Physical mt O the
e lt‘eriglveslgzpto 4void (persisting with the a,nalcl)lgyofr;mall) hsics) the
o Suﬂ?aenf . defective crystal or glass, with only locat }:n Eonditions chures.
formation of a be proved (see below) that, under cetf1 a o o e
g aabe i ill converge to the sta

i this procedure wi : orresponding
am‘eahng f'c}fi‘li‘? the e:ergy function. In pra?tlce, theizs <;c;nd1 i

nim : Y '

t‘0t'.ti;:f(iaeilmbut; SA still provides ‘good’ solutions in many
sal ,

Applications of Simulated Annealing

A lts
' 1bli A has consisted of reports on the resu
AN t'he s p'ubl;s:;i(ilo:o:}:d(jnbicause of its simplic.ity anI;l cc:)x;::x:;n:}f;
S expenmtel used TSP to evaluate the technique. : efI; orts on the
e freq1uen i.ztic vary. C. Skiskim and B. Golden [5] ound 54 to
et leéléAO rocedure and moreover fou.nd the ;()ier1 nance of
S ?O e itive I:'.o the details of the annealing sch;: u el.a o
e seIlSIonsidered N-city TSP with N < 100.S ;: aut er Paper
e e C';C)ldenJcL Lutton found that, for N > 250, (:'1 ;; e
e rop aJndd ;ile. convex hull algorithm. Mo.re generally, 1;:, R
s L e alnf a wide variety of optimization problem\;’ i o
s e are ; 17,8,9]. LO. Bohachevsky et fxl.[lO], .f ey and
e 1] aretahs,rs l,lz-:ve used Simulated Annealing succe}s:s.u yrogress’
o ROSI}er i and'o ois functions of many variables. In v;florvxlxziclie grese,
timization of contmlu as applied SA to timetabling and to t‘ e <:.1 e
e D aub};m lltter problem can be posed as a TSP ﬁn a,laI pural way
g POl locations corresponding to t:,he vel xcuh resources.
e d:l&mmg be implemented for timetaphng using t .er o
A csz:raints as the objective functlon.' T}}e nflay:; - difhoulty
violati'ons of the 'zoxl;le data structure to allow tl}e ob]f:ctlv«; suxll) o e
: clhOlt? edOfﬂ?ciZ‘:tl?r In an influential paper published in 1985, D.4.
evaluated e .

i idea of the ‘Boltzmann
j i (12] introduced the i . :
) 4 T3 Sejmovert | i i ich modifies the con
G.E. H lr:xtoandilinain-independent learning algorhlthm Kl;lcway difes the co
mad}me | ths between units of a ne.twork in su&cth e structure
necnon}(Sfi;mnlg es an internal model which captures fe]l nderlying siruchite
e exvironm i does not permit a full tr
i hile space does ment here the
low envuonn:lm;gin\l maypbe made. The Boltzmann machine is a
following gener

initially by J.J. Hop-
istri r' as developed initia
network or ‘parallel distributed processo
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field [13,14] and others. The machine is composed of elements called units
that are connected by symmetric links. A unit is always either on or off,
and it adopts these states as a function of the states of the neighbouring
units and the weights on its links to them. A unit being on or off is taken
to mean that the system either accepts or rejects some elemental hypothesis
about the input data (environment). The weight on a link represents a weak
constraint between two hypotheses. A variant of the transformation rule (4)
is used to modify the state of the individual units of the network so as to
bring the network to equilibrium at a given temperature. As always for SA,
the temperature is gradually lowered, resulting in (eventually) convergence to

combination of hypotheses violates the constraints implicit in the input data.
The reader is referred to [12,15,16] for further details.

Theoretical Results

The major contribution to the (very small) body of exact results about SA is
due to S. Geman and D.Geman [4] (November 1984).In o paper on Bayesian
restoration of noisy 2-D images they proved three significant theorems about
SA. Here it will suffice to state the three theorems; A, B and C and to dis-
cuss their significance. First, some notation is neccessary. (Some changes
have been made from that of [4] in the interests of clarity.) Let the state of
the system be specified by a vector z(t) with N components z,, The state-
generation process, (without loss of generality), can be required to alter only
one component of the state-vector z per update. Let {ns, t = 1,2,...} be
the sequence in which the components of = are chosen for updating, Then
{X(t), t =0, 1,2,...} is a random process which describes the evolution of
the system being studied, where X is a random vector with components X,,
and the evolution Xt — 1) = X(¢) of the system is given by

P(X,(t) =z,,s = L,...,N) =
(X, = 20, | X, = z,,s # ) P(X,(t—1) = 5,5 £ ng)  (5)
where IT = ¢=#V / 57 ¢~AU i 1o Boltzmann factor correspomding to (4) (U
corresponds to the energy E to be minimised.) Let the initial configuration of

the system be X(0), i.e. the initial distribution P(X,(0) = z,, s = 1,...,N)
is specified for the range of possible values of Z,.

it
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Assume that for each s, 1 < s < N, the sequence

Theorem A (Relaxation) for every starting configuration

{n, t > 1} contains s infinitely often. Then
t - -
n a;ld every possible state w,

0)
lim P(X(t) = w|X(0) = n) =1(w) (
" converges Lo II (the Boltzmann

In other words, the distribution of X(t) This s cssentially a

ardle X(0).
or Gibbs distribution) asl&-—» oolfe,g;rlil::s[s(])f (0)
rewordi the result in Metropohs Y . )
“'wgldllxl;gh(::tllg; notation is needed for Theorem B. Rewrite (5)

o1
= N) =
? t)= x4, s=1,..+, ) .
ree 11 ”)(X :- Ty | Xy = To, 8 7 t) P(X,(t-1) = To) 8 #ne) (7)
T(t nyg — In

IT on T, the temperature. The annealing pro-

= ...} for each suc-
dure generates a different random process {X(;l) ,tt 5 1,=2,{w }e i
cedure %emperature value such that (6) holds.ﬁ e ati(()ms e
ce.sslvz }}, that is, the minimum energy con gurd B e o,
inmfnl lgw tl;e uniform distribution on {lo. Finally, de
et llp be

U. = ming U(w) and & =U* = Us.

to indicate the dependence of

7 > N such

i there exists an integer
Theorem B (Annealing) Assume that iy

tha‘t tOI eie]) t D 1 2 ... WE Jlla"e 817"')8N} { 1’“‘t+2)"
{ h
) i Bias Bt} C “’t+

a) T(t) = 0asi— oo |
Eb) T(t) > NA/In(t) for allt 2 %o , for some to > 2

i i w in
Then for any starting configuration 1 in ) and for every ,

(8)
lim P(X(t) =W l X(O) = rl) = HO(w) .
e d does not
. ires that the update procedure
ition merely requires d imposes no
The first co.ndl ily low frequency as the system ?volves, an I;sonable
slow to an arbitrarily is trivially satisfied by any reh -
st i i lem. For the imag
ling schedule. However condition (b) is a majir Pr‘i‘ill: of ¢40000 u 1 dates
e blem studied in [4], for example, of the or de. First, condition
restoration pfic:ed to reach T' = 0.5. Some points can be mz;) e.a pirst :assary o
zvl;))u‘ld " I;;i:ient. condition for convergence, and may not be
is asu

Jimitations in practice. Condition (a)
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((:g?lwever, t};le physi'cal process of annealing requires very slow cooling, espe-
y near the freezing point.) Moreover, the modification of SA men’tioned

in Section 5 below due to H. Szu {17}, will, i
. , will, if ‘ i '
the performance predicted by Theireln B. 1 smccessiul, greatly fmprove on

Th . s .
imee(:rem>C (Ergodicity) As in Theorem B, assume that there exists an
ger 7 2 N such that for every t = 0,1,2,... we have {s; sy} C
yeeey

{nt41,n442,..., 144, }. Then for eve i
: : . ry function Y on () and f i
configuration n in (1, the ergodic hypothesis reveny starting

L1
Jm =3 ¥ (X(0) = [ ¥(o) dno) (0
t=1 0 :
holds with probability one.

The significance of this result is that time averages rather than phase aver-

ages, which are computati i
valu;s' putationally intractable, can be used to compute expected

Modifications of the Heuristic

Z?;:ll ::;dlgc;tlgns to .the basic SA heuristic have been suggested. J.W.
ncalng. They abierve that ot lon tomrommaen, oo oo e o o 2
because many candidates a;‘e rejected bi?gjeuresi ove ¢ tlme'ls o
This follows for two related reasons. First of a(;lacfl m’l‘f"e t;olla o Sta‘?e'
transition probability to states of higher energy 1; vzl; smﬁ )l\flhe e
temperatures, the system is likely to be in a state witi ilrr:f; :;m Sn::liov:; : (a;t l'ow
. o N
fojllt.:;i:;czsizﬁfai?atesthavmg lower energy. Greene and Supowit pﬁopiset;i:
(i o ) fro1ve tshmtegy. Let z;, « = 1,..., N, be the states accessible
joone moy whe:: he gurrent state of the system. Store w; = minl,q,
wi/E, w., m,ake ere 3},18 given by (4). Then choose state z; with probability
Of states,,generated A z:}r:ge of state.and re-c:fl'culate the w;’s. The sequence
e et y this method is p.roba,blhstically equivalent to the cor-
each time a move is re?::t:; t:ri l(:z’nii’dlf’f‘te repetgti?lns Pt Shave
\ ' . This can be de
using the notation of [18]. Let agr be the probabilityn;}?:lsztg?:e:cizrle?}‘::
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chosen move at temperature T, i.e.
1
OeT = 37 Z w; (10)

Then the probability that SA makes the move from state z to state = (say)
after some number of rejections is

el k 1 _ Wy {
l;)(l o) Nw'_NamT (11)

which is just w;/ ) wj, the probability of choosing z; under the rejectionless
method. The run time per change of state for rejectionless annealing clearly
has a value independent of the acceptance ratio, while for SA the value is
proportional to the reciprocal of the acceptance ratio. However the overheads
in terms of memory requirements and CPU for the rejectionless method are
large, so the method is only useful at very low temperatures. In numerical ex-
periments undertaken by the present author and a student, temperatures suf-
ficiently low to warrant the use of rejectionless annealing were never reached.
Another variant on standard SA is due to 1.0. Bohachevsky et al.[10]. In a re-
cent paper they propose using a modified form for the transition probability ¢
to states of higher energy (4). For problems where the minimum of the objec-
tive function @ is known to be zero (if the value is non-zero just use ® less the
known minimum value as the energy) they suggest setting ¢ = exp(—fPEAD)
where g is a suitably chosen negative number. The purpose of the modifica-
tion is to ensure that when close to the minimum, the heuristic is unlikely
to move a large distance away. No theoretical analysis of this modified SA is
offered but numerical experiments (on optimization of continuous functions of
two variables) are quoted which suggest the technique might be useful when
the value of the global minimum is known. For the more common situation,
where the value of the global minimum is not known, the authors suggest an
adaptive approach, starting with an estimate of ®min and modifying it as nec-
cessary as the search proceeds. 1t is not clear how effective this proposal is in
practice. Perhaps the most significant modification of SA is that proposed by
H. Szu [17] in 1986. As noted in Section 4, the result (8) due to Geman and
Geman [4] demands an unacceptably slow cooling rate for guaranteed conver-
gence to the optimal solution. Szu suggests an alternative approach which he
calls the ‘Cauchy machine’, in deference to the Boltzmann machine of Ackley
et al. [12]. In standard'SA the successive states of the system are generated
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from a uniform (or, more generally [15], from a Gaussian) distribution. In all
cases the distribution is of bounded variance. (The probability of accepting
this new state is, of course, given by min{1,q}, where q is given in (4).) In his
paper, Szu claims that using the Cauchy distribution, which has unbounded
variance, a cooling schedule reciprocal in ¢, rather than In (t), can be used. Un-
.fortunately only a rather unsatisfactory sketch proof is quoted and the reader
is referred to an (as yet) unpublished paper for a rigourous derivation [19].
'(Some numerical results are produced in support of his assertion.) However
if, as seems likely, Szu’s result is valid, the consequences for SA are majorj
An expon.ent;ially faster cooling rate will be possible, making the method far
more realistic as a general-purpose optimization technique than previously.

Summary

Simulated An.nealing, in various guises, has been in existence for five years and
}fas been applied to a steadily widening range of problems. With developments
like those quoted in this review, continued interest in the topic seems assured.
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On The Level
D.W. Lewis

We present a survey on the notion of the level of a field and its vari-
ous generalizations. We describe a lot of results that are attractive from an
algebraic viewpoint and also highlight the extremely interesting relations be-
tween algebra and topology that have been unearthed in the last decade in
connection with the level. We hope to persuade the reader that this is-an
appealing area of mathematics and that it should be a fruitful area for future
research. In Section 1, we look at levels of fields, in Section 2, we deal with
commutative rings and the link with topology and in Section 3, we look at
the non-commutative situation and generalisations of the idea of level.

1 TFields

Let F be a field. F is said to be formally real if —1 is not expressible as a sum
of squares in F. If F is not formally real we define the level of F', denoted
s(F), to be the smallest natural number N such that —1 is a sum of IV squares
in F' (We define s(F) = oo if F' is formally real).

The Artin-Schreier theorem [35, p.227] says that a field F' is formally real
if and only if F admits an ordering (i.e. s(F) = co if and only if F' admits an

ordering). ,
We look now at levels of some well-known fields

Example 1 F = R, the real numbers, s(R) = co.
Example 2 F = C, the complex numbers, s(C) = 1 since —1 = 12 in C.

Example 8 F = F, a finite field with p elements, p an odd prime. It is
a fairly easy exercise to show s(Fp,) = 1 if p = 1(mod 4) and s(F,) = 2 if
p = 3(mod 4). ‘

Example 4 F = Q,, the field of p-adic numbes. Then s(fy=1ifp =
1(mod 4), s(F) = 2 if p = 3 (mod 4). If F is the field of dyadic numbers then
s(F) = 4. See [35, p.151] for a proof.
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Exalll le 5 IOI -l an algebl alc nulnbel ﬁeld S -2 — 1 2 4 or ©o. I]lls 1S
p ( ) bt Bt |
k]l()wn as Slegel 8 t]leOI em as lt was ﬁ]st Ploven n [58]. See 135 ]) q“)“]
| [ 3 . foI‘ a

The notion of level seem
s to have first explici i
a0 followi ms b plicitly arisen ab i
Agr(:inc’) lowllng the wox"k of Artin and Schreier on formally r:aloililtlcsllxy AN
A em]s. S0 utllc:n of Hllbert’s seventeenth problem [3]. It is im ]ie 'tsl (4] and
o ear ;Ie;iWOI: of Hilbert, Landau and others, Indeed the genefalmr ;)f;Wever
atfention ng Ilrrllt::fers e:s: sums of squares seems to have perpetually eig(;geiimtl()f
athematicians, e.g. the work of Diop] N
1ant
Ga;;lsi.a nfl numerous others. The German word ‘SI,)tufe’ :f;stlm;a;’ grange,
an ’If:hls is the reason for the notation s(F) sed for the level
e suggestion that s(F) is alwa :
4 ys a power of two if fini :
64] and , wo nite w
[16 ] F(I)lr am ifigfi Hf Kneser [34] proved that s(F) = 1,2,4,8 or a ?zulfz?(ile of
this althouI;h :fewov :};:;;st ?gty years, no significant advance was mageeo(;lf
rs did examine the level
; : el [62, 31, 63, 38]. ;
Gx;)e;l;}t}hzzugh (c}ame 1 1936 when Pfister, inspired by a céllo(;uijmil‘llet major
o prov?ng thyat; a(s;:als on sums of squares in rational function fields suf:curil a(;
e of;‘ (}must be a power of two if it is finite. (See [51] f’or Pﬁe: e’
fiolds of prescrib :i Ilscczvze’fyf)' Pfister also succeeded in producing examljezr ;
eve or each positive ine ; N
ger k. Bef
o4fa field of level greater than 4 had been known. Pﬁsfe:’re thl.;,(no examp.le
[ 8]Iand uses quadratic form theory. 8 work appears in
t is easy to see that —1 is a su
@ m of squares in the fi i
1)- . : n ol e field F if and i
i(: tegrj;:]insxonal quadratic form given by the identity maf)ri: isoil;(la}; " t?“’a‘
.e. s zero non-trivially. Thus there is an obvi LoPIC,
. obvi i
tc}]}l::ix;t;;c fo;*m theory fmd the notion of level of a ﬁzll(lis Cclg;iI;iZ:'l(;:tbe(tlween
e ac ton % t a.q1}15fdrat1c form being multiplicative and this was the II;O ‘_’(Cled
peeded ¢ o 3;m 11s results on the level of a field. Accounts of his re ley nay
that o F)"l}s[ » Ch.11] and in [56, Ch.2, §10 and Ch.4 §4]. A very q:itl:s roof
o a power of t“./o if finite appears in [586, p.69-72], thi PI‘?Of
a 31$p ification due to Witt of the original proof, , this proof being
ﬁeldsargflixst autjhors have obtained results about the levels of specific kind
fel .d ster in [50] showed that 3(F) < 2% for F non-real and of ¢ e of
o C;zlozgrefe tii o;r;r areal closed field. In the realm of number thec?r El?nslcen-
om C .
in genoral ;(CF )e= S1 w§s studfed In (16], [17], [45]. For algebraic nur:bereﬁZ;::
oo ) y 2, 0r 4 lf ﬁ.mte by the theorem of Siegel mensioned
. question of how to distinguish between the cases s(F) =1 (;) ea,;.
. =4, 8 =2,
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s(I') = 4 has been examined in [27, 19, 8]. We quote for example the following

theorem of [27].
Theorem Let F' be an algebraic number ficld. Then s(F") < 2 ifand only if '
is totally imaginary and the local degrees at all primes extending the rational

prime 2 are even.

See also [44], [53] for some further results. The question of how the level
s(F) is related to other field invariants has been considered. Let g(F) be

the cardinality of F/ J2, the group of square classes. Pfister [49] showed

that g(F) > 2F(-Y) /2 where s = 2k and this was improved by Djokovic
[25], using an argument involving graph theory, who showed that for s > 2,

q(FF) > 2°71 /s where s = s(F). See also (35, Ch.11] for more information.

2 Commutative Rings

The definition of level is meaningful not just for fields but for any ring with
identity element 1. The ring need not be commutative. We deal with com-
mutative case in this section and the non-commutative case in Secion 3. (One
could even discuss the level of a non-associative ring with identity but this
lias not been considered by anyone to the author’s knowledge).

R) for R the ring of algebraic integers in a p-adic field were

Results on s(
= 1,2, or 4 in this case. For R being

obtained by Riehm [55] who showed s(R)

the ring of algebraic integers in the algebraic number field K results on s(R)
were obtained in [26, 46, 47 and 44]. In particular s(R) < 4 when s(K) < o0
(R)<3

[46], and in [26] it is proved that s(R)=1if s(K)=1,s

is proved in
< 4, this theorem being attributed to M.

if s(K) < 2 and s(R) < 4 if s(K)
Kneser. For further information see the above references.
It is easy to see that the level of commubtative ring need not always be a

power of two.

R = {0,1,2,3} with addition and multiplication modulo four.

Example
zero square in R.

Then s(R) = 3 because —1 = 3 and 1 is the only non-

Knebusch [32] proved that s(R) is a power of two when R is a local ring
in which 2 is a unit. Baeza followed this up by proving the same result for

local rings with 2 a unit and had more results on levels of rings in [5],

semi-
that, for a Dedekind domain

[7, app.1], and [6]. In particular he proved in [6]
R with field of fractions F, s(F) < s(R) < 1+ s(F).
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A major landmark in the theory of levels occurred in 1979 when Dai, Lam
and Peng, [24] proved the following:-

Theorem Any positive integer may occur as the level of a commutative ring.

The sensational feature of their work was that they proved this theorem
by appealing to a theorem from topology. Their proof goes as follows:-
Let ‘

R[$1,..,,xn]

(1+22+22+ - +a3)
Le. the quotient of the Polynomial ring Rzy, -+, z,] by the ideal generated
by 1+22+22+ - -+12. Clearly s(R) < n and the problem is to show s(R) < n
is impossible. Suppose —1 is a sum of n — 1 squares in R. Then there exist
polynomials p;(z1,22, -,%s),7 = 1,2,---,n— 1 and q(z1, 22, +,Tn) such
that

R=

n—1

—1=) pi+q (1 +y i= 1"'%;?)
Jj=1

The trick is to replace z = (21, %2,...,%s) by 1z = (iz1,...,12,) where
i2 = —1. Then we may write p,;(1z) = r;(z) + is;(z), r; and s; being
real polynomials, r; being even, i.e. r;(—z) = rj(z), and s; being odd, i.e.
s5(a) = —55(a). |

Now define a map f: 8"~ ! — R"™! by

f(z) = (s1(2), s2(z),. .., 3n-1(x)) for cach z € gn-t

Since f is continuous we may apply the Borsuk-Ulam theorem from topol-
ogy [59,p.266] which says that there must exist a pair of antipodal points
of §=1 mapped to the same element of R ie. f(z) = f(—2) for some

z € 871 But f(—z) = —f(z) for all & because each s; is odd and thus
f(2) = 0i.c. 8;(2) = 0 for each j. This implies that —1 = 2;’;11 ri(2)?, i

—1 is & sum of squares in R, completing the proof by contradiction.

After the Dai-Lam-Peng paper had appeared algebraic Borsuk-Ulam the-
orems were proven by Arason-Pfister (2] and also by Knebusch [33]. The
theorem of [2] goes as follows:-

Theorem Let fi, f2,..., fn-1 be a set of polynomials in z = (z1,%2,...,%n)
with coefficients in a real closed field F'. Assume the f; are odd, i.e. f;(—z)=
—f;(z). Then there exists z € S™~* for which f;(z) = 0 for all j.
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It is easy to show that the above theorem is equivalent to the statement
that given a set of polynomials f1,..., fa-1 in z there exists z € S™™! w.ith
fi(=2) = f;(2) for each j. Write each f; as an even plus an odd polyx.xomlal‘.

“This algebraic Borsuk-Ulam theorem for polynomials in fact will yield the

full Borsuk-Ulam for continuous functions by using the Weierstrass approxi-
mation theorem and the compactness of S™~1.

Proof We briefly outline the proof. Introduce an extra indeterminante o
and multiply each monomial in f; by a suitable power of zg 8o as to make a
homogeneous polynomial f;. Replace 22 by a2 + 23 + - s z2_, (zo appears
in even powers because f; i8 odd) and obtain f; which are homogeneous
polynomials of odd degree in £1,%2,..+, Tn-1- Now aplying a theorem of
Lang [36] these polynomials must have a common zero in F™ which we may
pake to be in S*~1. (Dividing by v/~ z? is all right as they are homogeneous!)

Dai and Lam [23] investigated in much greater detail the links with topol-
ogy that had been forged in [24). They discovered that the level in algebra
is closely related to notioms in topology that had been considered earlier by
C.T. Yang [65, 66] and by Conner and Floyd (20, 21]. We describe this now.

Let (X,—) be a topological space equipped with an irfyolution -, le. a
continuous map X — X, © — T of a period two (so that T = z)

Example 1 X = 8", —: the antipodal map.
Example 2 X =C, —: complex conjugation.

Example 3 X = the Stiefel manifold Vj, , of orthonormal m-frames in RrR",
with involution &, givenby

er(v1y- - Up, Upgly- -+ Um) = (Viy ey Vry=Vrd1seeey—Um)

An equivariant map between (X,-) and (Y,—) is a continuous map f:
X — Y such that f() = f(z) for all z € X. The level of the space (X, —)
is then denoted s(X, —) and is defined by

s(X,—) = inf{n : there exists an equivariant map from (X, —) to (5™ % -)}

Essentially the same invariant as s(X,—) had been studied earlier in (20, 21]
where it was called the co-index. '

The link with algebra is obtained by associating to (X, —) the ring of all
equivariant maps from (V,-) to (C, —). This ring is denoted Ax.
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Theorem (Dai, Lam [28]) s(X,—) = s(4x)
They also define the colevel
§'(X,—) = sup{n: there exists an equivariant map from(S™71, =) to (X,-)}

Motivated by this topological notion of co-level one may define for any real
algebra A an algebraic co-level

7 .
s'(A) = sup{n : there exists a real algebra homomorphism from A to Agn-1}

It is easy to see that, for any (X, —), s'(X,—) < s'(Ax). Dai and Lam proved
[23] that if X is a real affine variety then s'(X, —) = s'(4x).

Another interesting and related notion examined in [23] is that of the
sgblev;l of a commutative ring R, denoted o(R). We say o(R) = n if 0 =
ai+as+-- ~+aﬁ+1 for elements @1, az,. .., dnp41 such that the ideal generated
by‘these (n+1) elements is the whole of R and N is the least integer for which
this property holds. One notes that o(F) = s(F) for any field F' and that

o(R) < s(R) for any R. The simplest example of a ring R where o(R) # s(R)
seems to be ‘
Q[=,y]

T (1422 +2y2)
for which it can be shown that o(R) = 2 but s(R) = 3. See [23] and [15] for
proof.

If s(R) = 1,2,4, or 8 it can be shown that o(R) = s(R) by using the
2-square, 4-square or 8-square identities [29, p.417].

For a commutative ring in which 2 is a unit it is not too hard to show [23]
that s(R) = o(R) or 1+ 0(R). The following natural question was posed and
answered in [23].

Which pairs (n,n) and (n,n+ 1) occur as (o(R), s(R)) for some R? They
showed that (n, n) occurs for all n and that (n,n+1) occursfor alln = 1,2,4 or

8. They exhibited examples for all these cases. For n(n,n -+ 1) their examples
are the rings .

R[.'L‘)_,xz,~ T4y Y1, Y2, 0 ':yu+l]

(1_E$?11+Ey?vzxi3ﬁ)

To prove o(R) =n and s(R) = n + 1 involves relating o(R) and s(R)
to the level of certain Stiefel manifolds and calculation of the level of these
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appeals to non-trivial topological results. (In particular Adams’ result on the
non-existence of elements of Hopf invariant one). We refer the reader to (23]
for the details. There are many more interesting connections with topology
in (23], in particular using results on equivariant maps into Stiefel manifolds.
Tor example Adams’ theorem on vector fields on spheres may be used to show
that for any commutative ring R, if the form nx < 1> over R represents
—1 then in fact the form nx < 1> contains p(n)x < —1> as an orthogonal
summand. (Ilere p(n) is the Murwitz-Radon number (35, p.131}).

We should also mention one question raised in [23] and still unsolved at
present, namely the Level Conjecture. Let C be a commutative ring and

Clzy, 32, + - + n]
R= 2 2
(1+a2+...+23)

[

The Level Conjecture is that s(R) =n. For &' = R we have described the
proof and Arason-Plister [2] have proved it when C is any field. It is not clear
what technique to use for an arbitrary commutative ring C.

Recently much progress has been made on the study of levels in connection
with real algebraic geometry. The following lemma is a starting point for some

of this theory.

Lemma Let B be a commutative ring with 1. Then s(R) < oo if and only
if s(F(R/p)) < o0 for all prime ideals p of R, F(R/p) denoting the field of
fractions of the integral domain R/p.

Proof See [18], [12] or [22] where it was first observed. See [18] for how
this leads to the Real Nullstellensatz and Positivstellensatz in real algebraic

geometry.

When R is the co-ordinate ring of an affine variety V without any real
points Mahé has succeeded in finding a bound for s(R) in terms of the Krull
“dimension of R (One may show easily that V' has no real points if and only if

s(R) < o).

Theorem Let I' be a real closed field and A an F—algebra of finite type with
Krull dimension d, specA having no real points. Then s(A) <d—1+ gd+1,

Proof See [43]. This theorem answers question 11.3 posed in [23].
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We finish this section by pointing out that levels are only one aspect of
the general study of sums of squares. Throughout the history of mathematics
sums of squares have been a topic of fascination and curiosity. Some general
references are [28, 61]. One particular problem is that of the Pythagoras
number p(R) for a commutative ring R. We define p(R) to be the least integer

n such that every sum of squares in R is a sum of at most n squares. The

determination of p(R) is generally a very difficult problem. See [14, 15], for
further information and references. One may also examine k-th power’s inst,:ead
of squares and can generalize the level by asking for the least n such that —1
is a sum of n k-th powers. (k should be even as it is trivial for odd k). See
[10, 9] for information on this for fields, also [30] for rings.

3 Non-Commutative Rings

There is very little in the literature about levels or sums of squares in the
non-commutative situation. The following theorems were proved recently.

Theorem (Leep, Shapiro and Wadsworth) Let D be a division algebra
finite dimensional over its centre F. Then the following three statements are
equivalent: '

(i) 0 is a non-trivial sum of squares in D;

(ii) =1 is a sum of squares in D; ]

(iii) each element of D is a sum of squares in D.
Proof See [37]. Note that if D is a field this theorem is an easy exercise

A quadratic form g over a field F' is weakly tsotropic if, for some n, the
orthogonal sum of n copies of ¢ is isotropic. '

Theorem Let D be a division algebra finite dimensional over its centre I!
Then 0 is a non-trivial sum of squares in d if and only if the irace form of D
is weakly isotropic.

(Note: the trace form is the map ¢ : D — F, g(z) = tr g, tr being the
reduced trace [56, p.296].

Proof See [39].
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It follows that s(D) < oo if and only if the trace form of D is weakly
jsotropic for D as in the above theorems. In [40] we examined the case of D
being a quaternion division algebra and obtained the following results.

Theorem There are quaternion division a]geb'fas D wih s(D) = 2k for any k
and with s(D) = 2¥ + 1 for any k.

(It is an open question whether or not other integer values can occur as
s(D) for quaternion algebras.) The examples with level 2% and 2F + 1 are
described as follows: Let F' = K((t)), the Laurent series field in one variable ¢
and let K = R(z1,%2,.-+, x,,), the rational function field in z1, T2, ..., Zn. Let

i . . .
D= %—- where a = 3 1y z?, 1.e. D is the quaternion algebra defined by

i% = a,2 = t etc. For n = 2¥41it is shown that s(D) = n. For n = 2* we use
. . —tt—

F = K(t), the rational function field, K as above, but let D = ——LF——E
and then it turns out that d(D) = n. Our techniques make use of Pfister’s
results on products of sums of squares.

One may also consider sublevels for non-commutative rings and a few re-
sults appear in [41], mainly for quaternion algebras.

From one point of view it may be argued that the appropriate general-
ization of sums of squares to the non-commutative case is sums of products
of squares. For example Szele [60] proved the following generalization of the

Artin-Schreier theorem.

Theorem Let D be any skewfield. Then D admits an ordering if and only if
—1 is not a sum of products of squares in D.

This suggests one possible generalization of level to what we will call the
product level and denote sy (R) for any ring R. The product level s (R) is the
least integer n such that —1 is a sum of n products of squares in r. Define
s7(R) = oo if —1 is not a sum of products of squares in R. Szele’s theorem
thus may be rephrased as s, (D) = oo if and only if D admits an ordering.

Not also that Albert [1] proved that an ordered skew-field must be infinite -
dimensional over its centre and thus s, (d) < oo for finite dimensional algebras.

The only result in the literature on sy is the following due to Scharlau and

Tschimmel. .

Theorem Every positive integer can occur as Sy (d) for some skewfield D.
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A Sociological Question

A.G. O’Farrell

Write on John H. White’s theory of “open” and “closed” Catholr-
cism, in the contest of religion in modern Irish soctety.

— from a Maynooth BA exam paper.

Let OP be the set of all possible opinions. When endowed with Archdeacon
Wellbeloved’s aggiornamento topology (the topology of substantial agreement
on the broad fundamentals of the question), O P becomes a completely regular
connected Hausdorff topological space. Regrettably, OP satisfies neither the
first nor the second axiom of countability, and hence is non-metrizable, but
then you can’t have everything. The space OP contains non-contractible loopy
sets of opinions, and hence is not simply-connected. The problems this poses
may sometimes be overcome by passing to the universal covering space, the
space of all idee-fixed homotopy classes of circular arguments, also known as
full socio-loopy space.

A person is a set-valued function p, defined on the set R of all real num-
bers, with values in the power set of OP. The majority of persons ordinarily
encountered have the additional property that p(t) is empty before an initial
conception-time, depending on the person (depending on some other persons,
too, who enjoy it a lot more). It is also usually found that p(t) remains con-
stant once t exceeds about 15 years after conception-time. The technical term
for this is that p(t) has been set in concrete. '

Let N denote the set of propositions contained in the Nicene Creed.

Let A denote the set of propositions contained in the Apostle’s Creed.
Let I denote the singleton: { The Pope is tops }o

Definition A person pis a catholic at time t if and only if p(t) contains the
union of N, A, and I. :

Evidently, a catholic is open at time ¢ if it holds a neighbourhood of each
of its opinions. It is closed if it holds an opinion & whenever it holds opinions
arbitrarily close to z.

49
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Theorem 1 All open-closed catholics are Ioopy.

Proof The space of opinions is connected, because some people clearly find
it possible to agree with everybody. Thus an open-closed catholic must hold
all opinions, including inconsistent pairs of opinions. QED

Thus, at any given time, a loopless catholic may be open or closed, or
neither, but not both.

Lemma 1 The Pope is a closed catholic.

Proof That the Pope is a catholic is well-known (cf. Mahoney, Acta Apost.
Sedis, 1(33)1) . If an opinion y is close to an opinion z, but not equal to z,
then the Pope holds at most one of them, by the Infallibilitatsatz. Thus the
Pope’s opinions are discreet. Oops, discrete. QED

Corollary 1 If a catholic has trivial fundamental group, then it is closed.

Proof Let ¢(t) be a homotopically-trivial catholic. Then c(t) is loop-free, and
hence agrees with the Pope, period. The result then follows at once from the
lemma. QED

It should be noted here that Lefebvre, in his article on the application of
sheaf-theory to the exegesis of the Reaper-parable, has established that co-
herent analytic catholics are bl—dy fascists. This result is, of course, a simple
consequence of the above corollary, as is seen by referring to the pontifical
exact spectral sequence.

This leaves us with only one class of catholics to consider: the loopy, non-
open-closed class. Passing to full socio-loopy space, we observe that the Pope
remains discreet , when lifted, ‘because the covering map is a local homeo-
morphism. All catholics become loopless when raised, and hence closed. We
may not conclude from this that the unlifted catholics are closed, or even
Suslin-analytic, since the spaces involved are not Polish. We have proved:

Theorem 2 All uplified catholics are closed. Some loopy ones are also open.

This brings us to cardinals. A cardinal is a catholic who is discrete, com-
pact, totally-ordered and well-ordered by inclusion, and humble beyond belief.
Thus, if z is a cardinal, then it holds each of the opinions of all its predecessors.

IMS Bulletin 19, 1987 .
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Theorem 3 There are no inaccessible cardinals.

Proof Since cardinals are discrete and compact, they are aut;omaticall)}l1 finite,
hence do not go beyond the opinions of their predecessors, and thus they are

accessible. QED

The results may be applied to modern Irish society in a subsequent paper,

unless the author is silenced.

St. Patrick’s College ‘
Maynooth, Co. Kildare, Ireland
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programime is in the public domain which means its cost is nominal being
ABOUT Il_E}C about $50 from the AMS. On PC’s there are packages available which run
X and these are a little more expensive. For example a commonly used one
is called PCTEX and costs $248. This price should come down though in the
future. The main reason for TEX not costing thousands of dollars is that Don
Knuth has very generously given the programme to the public domain. Not
only this, he also donates all his royalties from the manuals he has written for
Why ,IF?(? TEX to the AMS TEX users group: Tugboat.
It is AMS policy to support TEX and Maths Reviews is completely typeset
in TEX as may be seen by looking for the appropriate small print on the inside
cover. Thus although TEX is not perfect—it is still considerably easier to fill in

Charles Nash Richard M. Timoney

Perhaps every mathematician is aware by now of the existence of TEX, a
system for mathematical word processing and typesetting designed by the re-

spected mathematician D. Knuth. This system has attracted some dissension . . !
among mathematicians, but it is rapidly becoming the standard system for ? form using a typewriter than to try and use TEX—it does seem to be much

preparing mathematical papers and documents because it is recognised even j;better than any alternatives * and this is particularly true for text containing

by its critics as the system which produces the best available output. lots of ma‘thematlcal symbols.. . L
The word TEX is a shibboleth for the initiated of the art of mathematical We think m?st mathen}at.lcmns roughlyf understal}d the capabilities of a
word processing: TEX is pronounced “tech” with the ch imitating that found golf-ball typewriter and this influences their expectations of the result when

in loch. As Knuth explains this is because TEX represents the Greek root Tex_fsomething is typed on such a typewriter. With TEX, we think it will also

The reason TgX produces such satisfactory output is that Knuth has put be necessary for mathematicians to have some appreciation of what can be

quite an enormous amount of effort into encapsulating within TEX the wisdom done, what is easy, what is ﬁlifﬁcult and what should not be asked of it. Some
accumulated by professional typesetters over the centuries. In this sense TE}(@cllanges of attitude are required; documents prepared using TEX have more or
is almost an expert system; it makes decisions of its own — how far above

1Jess the same constraints as one is used to in a journal. Somehow we acquire
the line a superscript should be, how small it should be, whether the limits (to a greater or less.er'extent) an appreciation of good practice in preparing
of integration should be beside the integral sign on above and below, etc. It 3" article for submission to a journal. Long formulae should be displayed

incorporates this kind of knowledge in respect of ordinary text also — spacing Erather than embedded in the text; underlining is almost never used in printed

between letters or words, sensible places to hyphenate English words where ;ma,t'eri.al - bold face or italic type is used instead; symbols z, y, f (z), etc are
necessary, for example. It does allow you to override the decisions it makes 5€b 11 italic type but sin, sup, inf, etc. are not.

if you really want to, but the reason the finished product is so excellent is This rather superficial change of attitude by the mathematicians content
largely because this kind of detail is built into the system. ’

to leave the details to someone else is not often considered. A lot of weight is
It is clear (to us) that the era of books or conference proceedings which ;frequfently placed on the difficulty of learning how to use TEX. It is true that
have been reproduced directly from typewritten copy is nearly over. Soon ’IEX involves creating first an abstract representation of the intended output

papers typed on a golf-ball typewriter will be as unacceptable as a typescript document. In this sense TEX is a kind of programming language, but this

with handwritten symbols is today. Just. as twenty years ago mathematics f:’ft?at‘.ure of it makes it attractive to many mathematicians. As against that,

departments adopted the golf-ball typewriter and coped with the consequen- Simple documents are simple. A text document with no formulae is just typed
: it is with the understanding that TEX will decide how much to put on

tial need to train secretaries in their use, they must now inevitably find the It 281
resources needed to implement TEX. each line and that one begins a new paragraph by leaving a blank line. As

As some of you may know TEX runs on both PC’s and mainframes'and as one would expect., it takes little more know-how to centre a line or to put

it i a very powerful piece of softw:«f,re one Yvould be forgive? for expecting it~ 1Ty, view is broadly similar to those expressed by Abikoff [1] and Palais [2].
1o be very expensive to buy. Happily this is not so: on mainframes the TEX
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somet?ling in larger or bold-face type. To start a formula (the equivalent of
changing to the symbol golf-ball) you type $ (or perhaps $$ for a displayedé
f?rlxlula) and you end the formula with a matching $§. Inside a formula a
simple subscript such as z; is indicated by an underscore x_1i, a superscript oriéi
exponent as in z2 by a carat x*2, the greck letter o by \alpha, and so on. As
one would expect, compound subscripts are marginally harder, matrices areyé
a little harder again, etc. Once typed into the computer — aI:d this can be
done with almost any text editor and on almost any computer (not necessarily
one that can run the TX program itsel{) — one runs the result through the
TEX program and the end product can be printed (or viewed on the computer

screen if you have appropriate equipment).

We admit all this takes a little getting used to and it helps a lot to have
someone down the hall who doesn’t mind answering questions that begin “How
do you do ...?7”. We don’t think it is an insurmountable difficulty for anyone

to learn, but some effort is required.

S?on perhaps we will all be preparing our own papers, exams and hand- ‘;"
outs in TEX on the micro in the office. There is a growing school of thought k

among those who can type reasonably fast that it is quicker to type in the
TEX input than to write out a draft which is sufficiently tidy for a secretary
to read. In the shorter term however, it is inevitable that secretarial work
becox}'xes computerised and, for the secretaries in the mathematics department
TgX is the right system to have. ‘

We present below our own experiences with TEX. We know that TgX has

also be?n adopted at other institutions in Ireland. Interesting developments
are taking place at UCD, where Wayne Sullivan is writing a TgX previewer "

and a Laserwriter driver, both of which promise tc be much faster than
t}fxo}slfe currently available. Those interested in getting a preliminary version
of his previewer should contact WSULIVANQUCD.IRLEARN (HEANET
(WSULIVANQIRLEARN.BITNET). ‘ ( )
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TEX at TCD

Tt is probably accurate to say that Timothy Murphy in TCD was the first Irish
person on the TEX scene and he set up experimental TEX outputting programs
(veferred to as printer ‘drivers’) at TCD at a very early date. Despite this,
due to lack of enthusiasm on the part of the TCD computer laboratory and
lack of resources under the control of the school of mathematics, it was only
recently that a satisfactory system for TEX has become available to users in the
mathematics departments. For some years there was a lone Toshiba printer
attached to the grossly overloaded DEC20 mainframe which was capable of
printing TEX output. The whole system was slow and painful to use and it was
necessary to go to the computer laboratory and physically adjust the printer
for TEX each time one used it. - :

For almost a year we have had an Apple Laserwriter attached to an Ergo
microcomputer (that’s an IBM-PC clone with a 20MB hard disc, 640K of
memory, a Hercules graphics screen and TEX software from PCTgX). This
is linked to the departmental minicomputer system (via software known as
‘Kermit’) so that TEX input files can be typed in on any of a number of
terminals in the department. The system is quite satisfactory although it is
still necessary to use the Ergo for finally printing (or even error-checking)
the input. We dream of a high speed network in the department with various
processors attached which would allow (among other things, of course) anyone
at any terminal to check a TEX input file for errors and send it off to be printed.
The PC linked directly to the printer might then only be used for confidential
documents and examination papers.

More than half the academic staff in the school of mathematics have expe-
rience of using TpX personally and the facility is quite heavily used. Regret-
tably the one secretary we had who was competent at producing mathematical
papers in TEX has left but we hope to remedy this soon.

How fast is TEX on our present set up? This is not too easy to answer
accurately. I took a short paper with a fairly high density of mathematical
formulae — integrals, partial derivatives, subscripts, etc. It took about a
minute to run through the TEX program (this step might need to be repeated
if errors crop up). Printing it out in 12 point type size (over 3.5 pages) took
about 7 minutes. The average time per page would be shorter for a longer
document (under a minute per page). Some of the time is occupied by the
computer translating the DVI (device independent) output produced by the
TEX program into a different format (about 2.5 minutes in the example) and
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some by initial overhead so that it took over 5 minutes for the first page to
appear. Thereafter the printer prints at about 2 pages per minute. The print
quality is high and the printer is not noisy.

There is also a screen preview facility which allows one to see the general
layout and to understand errors that have shown up in running the TEX
program. This is not quite instantaneous but is much faster than printing as
a way of looking through for things that are not coming out as you wanted. It
has the drawback that it takes a while to start up (perhaps 30 seconds), it only
allows you to see a portion of the page at a time and it takes a few seconds to
nove the ‘window’ around the page or to the next page. This program requires
better graphics (Hercules or EGA) than the minimum CGA standard. The
rest of the software runs happily without good graphics. Preview is reputed
to be noticably faster on a PC-AT.

On the subject of macro packages for TEX, we have tended towards IATRX

rather than the plain or AMS packages, For example we have INIgX style
files and blank documents for letters, memos and exam papers which we are
beginning to use. I should say that some of us do use plain TEX and all three
packages are available. RMT

TEX at Maynooth ‘
We have had TEX running and printing at Maynooth since the summer of 1983.

There are now many TEX users here and they are by no means all members

of the mathematics departments. For example they may be found among the
historians, linguists and sociologists; also the computer laboratory use TEX to
produce its monthly newsletter while the library uses it for special high quality
notices.
prose, TEX is rather easy to use. In addition considerable resources are needed
here to meet the demand created by all these TEX users.

In fact the most critical resources for TgX users tend to be the printers.
The two mainframes here (a vax and a microvax) support four printers for

TgX printing. Two of these are medium resolution Toshiba dot matrix print-

ers.. The other two are high_resolution DEC LNO03 laser printers. All four

printers are permanently switched on and offer queueing facilities: thus a TEX
job can be submitted to any of these devices from any terminal, then the job
either starts immediately if the relevant queue is empty, or awaits its turn
if the printer is already in use. The Toshiba printers are rather slow taking
three minutes or so to print an average A4 page. However they are fine for

One can infer from the above remarks that, for non-mathematical
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drafting and for when one is not in a hurry. The laser printers are extremely
 fast printing at a rate of six or seven A4 pages a minute even for the most
heavily symbol-laden mathematical text. A word of caution: not all laser
printers reach these speeds, particularly if, as is not the case for the LNO3’s
they use the page description language called Postcript. The siting of print-’
ers around the campus is an important topic and one of obvious interest to
mathematicians.

The mathematics departments have in their corridor a room in which one

of the Toshiba devices referred to above is located. Also in this room we
_ have an IBM PC clone known as a Prompt to which we have connected an

Apple Laserwriter. This latter arrangement frees us from being dependent on
the mainframes whose queues can become rather long and slow when these

" mainframes are heavily loaded. The PC can double as a terminal to the

mainframes so that we may use Kermit to send files back and forth between
the two sorts of machine. The Apple Laserwriter is not quite as fast as the
LNO03 particularly for mathematical text using many symbols per square cm.
I have referred in passing above to one of the reasons for this. Nevertheless
PC-based TEX systems are likely to become ever more popular in the future.
This is because the large fall in price of both PC’s and laser printers of recent
years makes their purchase an option for indivdual departments. As well
as this such a system operates independently of a potentialy heavily loaded
mainframe but can be connected to it using Kermit if it suits one. Many
mathematicians now boast PC’s either at home or in their offices and this
allows them both to make full use of all the college resources and to take their
work away with them on a diskette.

~ Lastly electronic mail, both national and international, is here to stay and
a TX file is an obvious medium in which to send a mathematical article. The
author has actually published an article in a conference proceedings abroad
which was submitted electronically at the request of the conference organis-
ers — they had some industrial action in their postal service at the time of
the“ conference. In the case of journals, the requirement of a uniform appear-
ance, and the need not to penalise would-be authors whose institutions do not
provide the relevant mathematical word processing facilities, makes routine
electronic submission look a little further in the future. CN




Axiomatic Method and Independence
Results!

Radoslav Dimitrié

Ever since the discovery of non-Euclidean geometries, mathematicians were
interested in formal methods and axiomatization of mathematical theories. It
became apparent that ever present Euclidean geometry was not the only true
geometrical reality, but that it could rather be substituted by other geometries
equally good and interesting on their own. ’

I will not exaggerate if I say that modern mathematics (by that I mean this
century’s mathematics) has been dominated by the use of formal i.e. axiomatic
method. The aim of this article is to give a brief survey of axiomatic method
with a few concrete applications.

Foundations of Geometry -

There is little doubt as to whether the thirteen books of Euclid’s “Elements”
were the most valuable and influential scientific books of all time, if for nothing
else but for the length of time during which they maintained their importance
and influence in Mathematics, research and education. For over 2000 years the
“Elements” were the standard of mathematical rigour, clarity and “absolute
truth”. '

As it is always the case in scientific progress, however, there has never been
room for contentment with any scientific achievement and this applied even
to so “perfect” a work as Euclid’s. Ever since the appearance of “Elements”
there were questions about independence and consistency of Euclid’s postu-
lates; could any of the postulates (a more customary modern word for them
is axioms) be derived as a theorem from the rest of the postulates? A special
attention was paid to the famous fifth postulate:

LA lecture of a similar content was delivered b;
y the author at the conf: “ i
Galway”, Ireland, 09 - 10 May 1986. onference “Groups in
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Axiom E For any plane = , any line | C m and any point A € w\ | there

exists at most one line k containing the point A and not intersecting the line

L

This postulate was shown to be equivalent (given all other axioms) to

~ the statement that there exists one rectangle or that the sum of the angles
 of a triangle equals to two right angles etc. Among the most penetrating
. mathematicians working on the subject were G. Saccheri (1667 - 1733) and

7.H. Lambert (1728 - 1777) who have developed geometry arising from axioms
without fifth postulate or its equivalents.

In the year 1829 the foundations of a great part of the 20th century mathe-
matics (and we can safely say of the 20th century physics as well as arts) were
established. Nikolai Ivanovich Lobachevski (1793 - 1856) published a paper

[14] in which he developed a geometry that differed from Euclidean geometry
by one axiom only. Namely it used the following negation of the fifth postulate

E

Axiom LB For some plane mo , some line lo C mo and some point Ag € 7o\ lo
there exist at least two distinct lines ky , kz through the point Ag that do not

intersect the line ly .

Great ideas appear in different great minds almost simultaneously: Janos
Bolyai (1802 - 1860) had published in 1832 the same ideas in the appendix of
his father’s book (see [1]). Karl Friedrich Gauss (1777 - 1855) is said to have
had investigations in the new geometry but he cannot be praised as much for
the discovery not only because he did not publish any result of this kind but
also because he had an entirely negative and discouraging attitude towards
the discoveries of Janos Bolyai who abandoned mathematics ab a young age
after being exposed to such an attitude of the “King of mathematicians”.

The theory was systematically built up according Lo strict deductive rules
and had no inconsistencics. It was a big surprise ab the time and there im-
medintely arose questions as to whethor the new geometry was as valuablo as
the vuling Kuclidean geometry, in mathemalics, philosophy and the physical
world (the space measurements were taken with no instant success, only Lo be
successfully performed after A. Einstein’s work in relativity theory).

In the same period differential and projective geometrics were developing.
The first one led Bernhard Riemann (1826 - 1866) to the introduction (in
1854) of what is nowdays called Riemann spaces. Among them there stood
out in particular spaces with constant curvature embracing the parabolic type




that corresponds to the Euclidean space, the hyperbolic type corresponding to

Lobachevski - Bolyai space and elliptic type corresponding to projective spac
with su.ltably chosen metric. Among the first interpretations of Lobachevsk
- Bolyai Geometry was the one given by Eugenio Beltrami (1835 - 1900). H

used a pseudosphere to draw lines | and m, n (asymptotically converging to
L) w,lt'h mﬁr: = P.and mNl=nnNl=49, and thus interpreting them as
“straight lines” obtained the LB axiom. Note that in this case the sum of the

angles of a triangle is less than 180° .
A similar interpretation of Riemannian Geometry is to be found in a mode

of a sphere, where great circles are interpreted as “straight lines” and thus
they always intersect (in two points), and the sum of the angles of a triangle

is greater than 180° .

On the .basis of Beltrami’s ideas, Felix Klein (1849-1925) has given in 1871
in [13] bi'i.SlC results on consistency of Lobachevski-Bolyai geometry, whereas
David Hilbert formally resolved problems of consistency of both I’Euclidean -

and Lobachevski - Bolyai geometry in [9] and [11] respectively.

Hilbert started with a set of primative notions (non-defined intuitive no-

tions such that new notions are built up of these). The primitive notions are: a

set § (“space”), classes of subsets of § (“lines” and “planes”), ternary relation

B and quaternary relation D on § (B : “betweeness”, D : “equidistance”)
(At the same time M. Pieri published in [16] and [17] two axiomatic s stem.
of Euclidean geometry that each depended on 6nly one primitive notio);l ) ’
Several statements (axioms) give properties of primitive notions tha.t are
most likely to be intuitively clear from “everyday experience”. The axioms are
usually grouped into: Azioms of incidence (stating set theoretical relations
between points, lines and planes), azioms of order (listing properties of th
relation B ), azioms of congruence (about the relation D) and the azio .
of continuity (enabling the Archimedean property). Geometry del;erminert'i1
by these axioms is called absolute-geomeiry. If the axiom E or LB is added
to the axioms of absolute geometry, then we get respectively Euclid
Lobackevski-Bolyai geometry. e
It is also assumed that in constructing an axiomatic theory T use is mad
of other axiomatic theories (in our case set theory) which are .presﬁpposed (i ee
all their primitive notions and axioms are adjoined to those of T/)p . -
"¢ The main demand on any axiomatic system is its consistency ien £i§at no
- antinomy can be derived from the given set of axioms. The quest.io.n. whether
some axioms can be shown to be the consequences of the others is that of
“'.‘ndepcf.ndence of an axiomatic system. Though it may not be as important as
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consistency,
od to the discovery of new geometries. Proving consistency and independence

 consists of finding an (outside) consistent model satisfying the axioms (after

61

historically it is the investigation of independence of axioms that

certain interpretation) of the theory. An axiomatic system is categorical if any
two of its models are isomorphic i.e. if it has a sufficiently strong axiomatic
system determining uniquely its model up to an isomorphism.

The Euclidean geometry has been proved to be categorical and consistent

provided the axiomatic system for arithmetic of real numbers is consistent.
Namely the three-dimensional Cartesian space R® has its own analytic ge-
ometry and the notions like points, lines, planes, betweenes and equidistance
can be represented as ordered triples of real numbers and certain equations,
together with a set and number-theoretical relations between them. Also the
Euclidean fifth axiom E can be proved by proving that certain system of equa-
tions has a unique solution. The consistency of Lobachevski-Bolyai geometry
was proved by interpreting it on Beltrami-Klein space — three-dimensional pro-
jective space with its analytic geometry (three-dimensional projective space is

a quotient space of R® \ 0 under the equivalence relation of proportionality.
of coordinates). The BL axiom holds in this model and it is obvious that
Cartesian and Beltrami-Klein models are not isomorphic (they contain con-
tradictory theorems E and LB respectively). Since both of these models are
models for absolute geometry we conclude that absolute geometry is not cat-
egorical (since it contains at least two non-isomorphic models). On the other
hand, as in the case of Euclidean geometry, Lobachevski-Bolyai geometry is
also categorical.

We would like to emphasize here that the consistency of Euclidean and
Lobachevski-Bolyai geometry is only relative - dependent on consistency of the
arithmetic of real numbers. :

For a detailed treatment of developing foundations of both geometries we
recommend [2] to the interested reader.

Axioms for Set Theory

Methods used in a formal mathematical theory T are characterized by a very
precise language, and, since I will content myself with the theory necessary
for most of todays mathematics, namely set theory, I will call that language
LST - the language of set theory. With LST we use the rules of logic (the
axioms of first order logic, to be precise) and the rules for the formation of
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complex statements out of elementary ones. (This game must look strange to
an outsider, since a non-mathematician friend of mine has recently told me
that my mathematics is all squiggles together with lots of equality signs and

zeros.)
The rules of the game are called axioms and, in the case of set theory, the

most widely used system is the system of Zermelo-Fraenkel axioms (abbrevi-
ated as ZF); we give their heuristic list:

. Eztenstonality: sets having the same elements are equal.

. Union: the union of sets is a set.

1
2
3. Infinity: there is an infinite set.
4

. Power set: the collection of all subsets of a given set is likewise a.

seb.
5. Foundation: any non-empty set has a member disjoint from that
set.
6. Replacement Scheme: for any set and a function with that set as

domain, its image is also a set.

The replacement scheme as such is infinite and thus the list of axioms is
infinite. Moreover it has been proved that no finite collection of LST sentences
suffices to axiomatize ZF theory.

Though there may be various systems of axioms suitable for the same or
different purposes, apparently not all of them are equally good or good at all.
Every axiomatic system however should be tested by the following criteria:

(a) Consistency: T is consistens if there is no statement S such that both §
and nonS can be derived from T or equivalently, if there is at least one
statement S (formulated in the language of T ) that cannot be deducted

from T . .

Completeness: T is complete if, for every statement 5 formulated in the
language of the theory T , either S or nonS can be derived from the
axioms of T according to the deduction rules.

(b)

(c) Independente: T has an independent set of axioms if none of its axioms
can be dérived from the remaining set of axioms.
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As it is easy to conclude from the definitions just given that there is a
relationship between consistency, completeness and independence, we note
the following:

Proposition A statement S is not provable in T if and only if T + non§ Is

consistent.

Model Theory

As noted before, the first proofs on consistency and independence of a theory
were given at the time of the appearance of non-Euclidean geometries by the
use of models. The majority of the results on these metatheorethical questions
in set theory were also achieved by the use of models; it is enough to get a
(consistent) model for proving that a system of axioms is consistent. A very
strong theorems in this area were given by Kurt Godel (see e.g. [8]).

.o

G5del Completeness Theorem If T is any consistent set of statements
then there exists a model for T whose cardinality does not exceed the cardi-
nality of the number of statements in T if T is infinite and is countable if T
is finite.

There is a Lowenheim-Skolem theorem very gimilar in content to the just
stated theorem . One of the amazing consequences here is that there exists a
countable family of sets with the property that if the membership relation is
restricted only to those sets, then we get the model for the whole set theory
(keep in mind that set theory contains uncountable sets and at the first sight it
looks paradoxical that uncountable sets can be pictured in a countable model).

Gédel Incompleteness Theorem If T is a consistent, sufficiently strong
(ie. if Peano arithmetic could be built in it), effective list of sentences (ie. if
there is an algorithm for recognizing a sentence from the list), then there is a
statement S such that neither S nor nonS can be derived from T .

Gédel Underivability Theorem If T is consistent, sufficiently strong, ef-
fective list of sentences, then T FC\(T) (i.e. consistency of an axiomatic
system cannot be proved from the axioms of that system alone).

There are numerous applications of the methods used in model theory
to the areas outside set theory. At the moment we give an example from
non-commutative group theory.
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i finite number of A I ALT
Given a of words w; = af*...q;" = 1 p; €7, a; €

in a group G, can we determine (find an algorithnll) whether another wor
w =17 Or, equivalently, can w be obtained from w; by taking multiplication
inverses and conjugation? This problem was translated into arithmetic term
and proved unsolvable in classical axiomatic system of set theory.

We give two more extremely important and useful results from model the.

ory:

Theorem If a theory T has an infinite model or arbitrary large finite models

then T admits models of arbitrarily large cardinalities.

Compactness Theorem If every finite subset of an axiomatic system T

has a model, then the whole T has a model,

The Axiom Of Choice And The General
Continuum Hypothesis

From what has been said so far we understand that one cannot hope to base

all conceivable mathematics on a single axiomatic basis and that is the reason

that a continuous search for additional axioms is carried out. Various new
axioms are being discovered every day. The space allowed makes it possible

to list only the two most common ones: The axiom of choice and the general

continuum hypothesis,

Axiom of Choice (AC): For a given collection of sets, there is a set that
contains one and only one element of each set of the given collection. This

is equivalent to well ordering of any set as well as to the existence of infinite

products.

General Continuum Hypothesis (GCH): For every infinite set X and
every family ¥ of Sf'bsets of X , ¥ is in one-to-one correspondence either with
a subset of X or with a set of all subsets of X . Using the aleph notation it is

the statement that 2% = Rat1. Ifa =0, we have the Continuum hypothesis
CH .

Cantor used the axiom of choice as early as 1878 and the continuum hy- i

pothesis is also his [3]. Hilbert’s first problem (see [10]) was the question of
proving AC and CH from the system ZF . Both axiom of choice and the

Aziomatic Method

65

generalized continuum hypothesis however were proved to be independent of
ZF . We list a few results from [4,8,5] (Con(T) denotes consistency of T ,

and ZFC = ZF + AC ):

(1) Con(ZF) = Con(ZFCQC) ,

(2) Con(ZF) = Con(ZF + nonAC) ,

(3) Con(ZF) = Con(ZFC + GCH) ,

(4) Con(ZF) = Con(ZFC + nonCH) ,

(5) ZF + GCH = AC,

(6) ZFC => there is a set of real numbers that is not Lebesgue mea-
surable ,

(7) Con(ZF) = Con(ZF + nonAC+ there is a set of real numbers
that is not Lebesgue measurable).

Whereas most mathematicians use AC in their work without questioning it,
CH and GCH are not nearly as widely accepted. Moreover there are some
very “natural” results following from the negation of GCH or CH .

Algorithmic Unsolvability

At the end of this survey I would like to point out a different kind of inde-
pendence problems, yet closely related to the ones discussed in the previous
section.

Ancient mathematicians have already noted that the ratio of the hy-
potenuse of an isosceles right triangle to its leg cannot be rational. They
have also posed such questions as squaring the circle, doubling the cube or
trisecting the angle by the use of only straight edge and compass., All these
problems were shown to be impossible to solve, that is to say the axioms of
the ruler and the compass do not suffice for making the required construc-
tions (the problems were positively solved by the use of some more powerful
devices... ). It was also shown that there are polynomials already of the fifth
degree whose roots could not be found by means of radicals (this last problem
may had been the main step in the discovery of groups).

The most sophisticated among “modern” achievements of this kind is an
ingenious solution (by Yuri Matijasevi¢ in [15]) of Hilberth’s tenth problem
(see [10], also [6,7]).
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Hilbert’s tenth problem asked for an algorithm testing Diophantine poly.

nomial equations for having integer (or, equivalently, natural) solutions. Al

though the notion of an algorithm can be precisely defined we will assume an

intuitive feeling for the notion and, say that an algorithm is a “procedure

(“circulum vitiosus”!) that could be carried out by a computer in a finitely

many steps and a bounded amount of time.

Definitions (a) A set S of ordered n-tuples (ai,...,a,) of natural num-

bers is called Diophantine if for each such an n-tuple there is a polyno-

mial P(ay,...,an,%1,...)%m), m > 0, with integer coefficients such that

Play,...,an,2i,...,%m) = 0 has a solution in natural numbers z,,... , z,,.
(b) A set S of ordered n-tuples of natural numbers is listable (or, in a more
latinized version, recursively enumerable) if there is a well defined algorithm

for making a list of all members of S .

(c) A set S C N is computable if there is an algorithm (of finitely many

steps) for deciding whether any natural number belongs to § .

A few examples of Diophantine sets are as follows: integers having an odd

divisor, the sets { (z,y) : < vy}, {(2,y) : = divides y} .... Some more
examples can be obtained through the notion of a Diophantine function. It

is such a function that its graph is a Diophantine set; or more precisely: a

function f of n variables is a Diophantine function if {(z1,...,%Zm,y) 1y =
f(z1,...,2,) } is a Diophantine set. The functions T'(n) = 1+ -+ n =

n(n+1)/2 , E(n, k) = n*, F(n) =n!, B(n,k) = (}) are Diophantine.

It is easy to see that every Diophantine set is recursively enumerable. 1

However the following fundamental result (see [15]) shows that the converse

is also true:

Theorem A set is Diophantine if and only if it is recursively enumerable.

If we express this theorem in, for us more suitable “polynomial form”, we

have:

Main Theorem There is a procedure that can be used on any algorithm

listing a set S of n-tuples of natural numbers, to get a polynomial P with
integer coefficients such that P(ai,...,an,%1,...,%m) = 0 has a solution in

nonnegative integers z1,. .., %m if and only if (a,...,a,) €S .

Now, if a set § is computable it is recursively enumerable but a basic result
in recursion theory states that the converse is not true:
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Theorem There is a listable set S C N which is not computable.

Corollary There is a polynomial P(a, zy,...,%,) such that there is no al-
gorithm for deciding whether P(a,zy,...,%m) = 0 has integral solutions in
Z1,---,%m , for any given values of the integer parameter a .

This is a strong negative solution to Hilbert’s tenth problem since it states
that there is no algorithm for testing solvability of Diophantine equations,

even with one parameter only.
Notice that the result does not give the way to find out which Diophantine

equations are indeed algorithmically solvable.
Let me now mention a few positive results. One of the consequences of

the Main Theorem above is that there exists a polynomial P with integer
coefficients containing all prime numbers among its values (there are various
examples of such polynomials of less than 12 variables and polynomials of the
kind of the fifth degree). For the novelty’s sake we list one of such polynomials

(see [12]) containing “only” 325 symbols:
Theorem The set of primes is exactly the positive range (as the variables
range over natural numbers) of the following polynomial of the 25th degree

and 26 variables :

P(the letters of the English alphabet) =
(k+2){1— (wz+h+7—q)2—[(gk+2g+k+1)(h+7)+h—2f
—[16(k+1)3(k+2)(n+1)2+ 1~ f2P = 2n+p+q+z—¢)
~[2(e+2)(a+1)2+1— %> = [(a® - 1)y* + 1~ z?)?
~[16r%y*(a® = 1) + 1 = u?P = [(a® = )PP + 1~ m?? —(ai+k+1—-1—14
~[((a+ (v - a))* = 1)(n +4dy)* + 1 = (z + cu)*]
—(n+l+v—y)P—[p+illa—n- 1) + b(2an + 2a — n® — 2n — 2) — m|?
~lg+yle—p- 1)+s(2ap+2a-—p2—2p——2)—-x]z—-
~|z + pl(a — p) + t(2ap — p* = 1) — pm|’}
It is worth mentioning that the methods discovered can be used to refor-
miilate some of the classical problems in mathematics, by getting equivalent

statements saying that certain polynomial Diophantine equations have no so-
lutions in nonnegative integers. Among such classical problems are the last
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Introduction

This article arises from a postgraduate course in geometry given by Professor
Barry at U.C.C. As part of the course we undertook some project work on
the geometry courses of Georges Papy, Gustave Choquet and Jean Dieudonne.
Here we hope to review these three courses and their potential for inclusion
in the secondary school curriculum.

First of all, we must ask the question: why teach geometry? One obvi-
ous reason for teaching geometry is its application to real life situations and
problems. Through the study of geometry children develop practical skills in
~ such areas as measurement, calculations of areas and volumes, use of grids and
co-ordinate systems. It also gives them an understanding of the concepts of
two-dimensional and three-dimensional space. Clearly geometry has applica-
tion to topics in mathematics and can indeed be regarded as a unifying theme
in the mathematics curriculum. It provides a rich source of visualisation for
arithmetical and algebraic concepts. Geometry is essential for mastering cal-
culus and therefore all other fields that have calculus as a prerequisite. A
_major reason for the inclusion of geometry in the secondary school curricu-
~ lum is its value as a vehicle for stimulating and exercising general thinking
skills, skill in deductive reasoning and problem solving. Through its precise
use of language, geometry can also play a part in the development of skills in
communication. Therefore, geometry has an important role in the secondary

school curriculum.

k The next question is: How should we teach geometry in secondary schools?
It seems to us that there are two main approaches. One the one hand there
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some affine transformations.
The next step is to obtain distance on the plane. Here two further axioms

are introduced. The first introduces perpendicularity as an undefined notion
and lists its properties. Choquet defines orthogonal projection and the second
axiom postulaes that if two segments of equal length but on different lines have
the same endpoint then the orthogonal projections of each into the other have
the same length. Choquet next chooses an inner product whose symmetry is
guaranteed by his last axiom and having established a number of preliminary
results, he shows that for all z,y € II, d(z, y) = |ly — z||. At this stage
Choquet’s course is truly in the domain of Euclidean geometry.
In the remainder of the course Choquet deals with several other topics
geometry. He examines transformations of the plane and pays particular
ttention to the group of isometries I, which fix a given point o and to the role
f the abelian subgroup R, (consisting only of rotations) of this group. This
lays the groundwork for his definition of angle as rotation and so he obtains
mmediately that the set of angles with given vertex o is an abelian group.
In order to measure angles, Choquet relies on the existence of continuous
‘homorphisms from R onto the multiplicative group of complex numbers with
_absolute value one, having shown that the set of angles with given vertex is
isomorphic to this group. He treats orientation algebraically and shows how
_an orientation of the plane can be obtained using either the group of affine
ransformations or the group of isometries. Choquet also treats elementary
trigonometry and the geometric properties of the circle.

is the synthetic approach, which was used by Euclid and later completed

brought to logical perfection by he German mathematician David Hilbert 0;

the other hand we have an approach to geometry which uses linear al e;b :

Choquet, Papy and Dieudonne all favour the latter. =
We now outline their courses.

Choquet

While Choquet agrees that children benefit from an approach to geometry
base.d on concepts drawn from the real world such as parallelism perpendi¥
ularity and distance he believes that from the mathematician’s p,oint of vi ;
the most valuable method of defining a plane as a 2-dimensional vector sp .
over‘R having an inner product. In order to reconcile these ideas he uses s
thetic ax.ioms and sets out to demonstrate the algebraic structure of the pla
Then using the tools of linear algebra he develops the course in geometry,
. (.Jh'o.quet’s first step is to develop the vector space structure of the pl.z.m 5
His initial axioms are concerned with incidence properties of points and line
z%nd also deal with parallelism. Parallel projection is the natural orders ones
line and so he can deal with betweenness of points. His next axiom assum ﬂ
that parallel projection maps intervals to intervals and therefore preserv::;
betweeness of points. Choquet makes a strong point that geome’try should
not be burdened with the task of constructing the real numbers and in hig
courses.he assumes that R is a totally ordered archimedean commutative
field. His next axiom assumes distance on a line. ‘
NOVY Choquet has both distance and order on every line D, so he can chose
any point 0 € D and one of the natural orders of D to obtain a pair (Do
cal‘led a pointed line. On this pointed line he can define operations unde;'g
unique xs?morphism. Thus each line (D, o) is a vector space. Choquet next
defines midpoints and postulates that parallel projection preserves midpoints:
He can now define a parallelogram as a quadruplet of points (a,b,d',b') suc'
that .(a., a') and (b,b') have the same midpoint. Having chosen a,n,y ;oi,nt o€l
as origin and writing (II, 0) for the plane IT with origin chosen at 0. Choquet
fieﬁnes addition in II to be the operator (z,y) — z + y where (0,2, +3 )
is a parallelogram. He can show that addition is well defined and ,pr,oves tl,xy
((TL, 0), +) is an abelian group. He next defines scalar multiplication and shows
that (I1,0) is a vector space. He uses translations and homothetic maps
show that for any a,b € II the vector spaces (II,a) and (II,5) are isomorphi
Having established the vector (space) structure of the plane Choquet discuss

Papy

In Papy’s opinion, linear algebra provides the best approach to geometry. In
his course he uses synthetic axioms to help him represent the plane as a vector
_gpace. He begins with three axioms of incidence, then he defines parallelism
‘and direction and his fourth axiom states ‘Every direction is a partition of the
plane’. At this stage, Papy gives his perpendicularity axiom. ITe now defines
_parallel projection as well as the notion of equipollence, which is extremely
important in this course.

Ile proves that equipollence is reflexive and symmetric and by introduc-
ug the axiom ‘Equipollence is transitive’, he deduces that equipollence is an
quivalence relation. The equivalence classes are called translations or vectors
nd the set of translations forms a group under composition. By fixing a point
in the plane II, every point « € II will define a vector oz and Papy proves
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and cubic polynomial functions. This lack of a continuity axiom precludes the
‘measurement’ of angles in the usual sense, wich Dieudonne claims is rightly
part of analysis and has nothing to do with algebra or geometry.

He now goes on to define a Eucidean Plane as a two-dimensional vector
space over R with an inner product attached to it. All the standard affine
results and properties (including axiom) can be deduced as theorems for the
Papy can lay off multiples of an interval of the form p/2(p,q € N) along _ vector space axioms alone, with suitable definitions of line and parallelism.
line. By inserting an archimedean axiom he makes sure he reaches beyon For example, denoting the vector space by E, for 0 #b € E he defines a line
each point on the line and his continuity axiom ensures that every point of s
the line will be contained in one of his subgraduations. Papy also uses this
process of graduation to build up the real numbers and he believes that by
introducing the reals in this manner he not only enriches his Geometry but
also the concept of a real number.

He defines the abcissa of a point on a line and uses this notion to defin
aaddition on the reals. Now it is possible to prove that (R,+) is a commuta.
tive group. Papy now defines homothetic maps and uses these to define th
multiplication. He proves that (R, +,:) is a field and that R, is a real vecto
space. Next, Papy defines an inner product and the norm of a vector an
so the distance between two vectors can be defined as ||z — y||. We are no
dealing with Euclidean Geometry and results such as Pythagoras’s Theorem
are easily proved using the vector space structure. }

From here, Papy goes on to consider the classification of isometries. H
discusses the group of angles and the isomorphism between this group an
the group of rotations. (He defines angles as ‘rotations which have lost thei
centres’). He also considers the field of similitudes, complex numbers an
trigonometry.

that (ITo,+) is also a commutative group.

At this stage, an order axiom is introduced and now half-lines, half-plane
etc. can be defined. Papy defines midpoints by using equipollence and s
begins the important process of graduation of the line, which will integrat
distance into his course. Using transitivity of equipollence and also midpoint

L={a+X:A€R}=a+D, a€kE

here D = {Ab: A € R}. is called the direction of L. Then Ly = a3 + Dy
and Ly = ag + Dy are parallel if and only if Dy C D (or vice versa). It can
be shown that:

(i) For distinct Ly,Lz lines in B: LinLy=0or Ly N Ly = {z}.

(ii) Given Ly a line in E,c € E, then there exists a unique line Ly in E such
that ¢ E_Lg and Ly is parallel to Lq. ‘

(iii) Through any pair of distinct points ¢1,cz € E there is one and only one
line.

Using the total ordering on R, he can now define in an obvious way the
oncepts of midpoint of a segment, betweeness, half-line and line segment. ‘
The standard definitions of translation and affine map are also introduced
\ere viz. if I,F are two dimensional vector spaces, a € E, then t,: E — F,
a(z) =a+zisa translation of E by a, while u : E — F is an afline map
fu=t,oV, where t, is a translation of F (b € F arbitrary) and V' a linear
map from E to F. We get parallel projections by noting that any two distinct
ines intersecting at the origin yield a direct sum decomposition of E (ie. are
upplementary subspaces) and so any z € E can be decomposed into the sum
two unique elements, one taken from each of the lines.
Placing an inner product on E now makes E into a Euclidean plane. We
ess here that any inner product will do and that if two inner products are
oportional (fis proportional to ¢’ if § = )0’ for some A > 0) then they both
duce essentially the same Buclidean structure on E. This is not true for non-
oportional inner products. Via the inner product. we now have immediate
cess to the Eucidean concepts of orthogonality, perpendicularity, distance
he plane and angle, along with all the standard results from synthetic

Dieudonne

Dieudonne’s geometry course is based completely on the concepts of linear
algebra— he makes absolutely no concessions to synthetic methods. In fact hi
main reason for writing this book is to influence secondary school mathemati
courses away from synthetic geometry towards a greater acceptance of linea
algebra as a method of developing Euclidean plane geometry. k

As Dicudonne’s will be dealing with vector spaces over the real numbers
he begins by listing a set of axioms for R which is necessary and sufficien
for his course. In particular, these axions make R into a totally orde
field. Even at this early stage his puritanism intrudes, because instead o
continuity axiom for R, he uses an Intermediate Value property for quadrati
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Fucliden geometry. For example, with the usual definition of ort,hog(A)nality%é
we can deduce a version of Pythagoras’ theorem as a one line corollary OF
Minkowski’s inequality, which itself is easy to prove in two dimensions. 'l‘woé ‘
lines are perpendicular if their respective directions are orthogonal subspaces
and, using a metric d induced by the inner product, we define a circle, for
some fixed zp € ££ and A € R, as a set {z € I : d(z,,z) = A}, Dicudonneyy
treabment of plane geomelry finishes with a glance ab trigonometlry and ui
development of complex numbers, :

Because Dicudonne is intent on introducing linear algebra as well as geor
ctry, some of his constructions are more elaborae than necessary if the maiy
emphasis was on geometry. For example, his introduction of symumetry abo k
the origin develops the concepts of eigenvalue, eigenveclor and eigenspac
whereas in a geomelric context we could simply define this symmetry map
u: B — I,u(z) = —z. A treatment of plane gecometry is given in [1], ai
this even manages to avoid the explicit introduction of vector space axioms
by apprpriate definitions of addition and multiplication in R

This brief outline demonstrates clearly that Dieudonne’s approach to g
ometry differs radically from he synthetic approach and consequently from the
methods of treating plane geometry in most elementary school courses.

Conclusions

All three writers are agreed that the ideal way to approaxh geometry is v
linear algebra. Consequently, they wish to arrive at a vector space structu
as soon as possible. However, here Dieudonne disagrees with the approac
adopted by both Choquet and Papy. Dieudonne claims there is no need
‘scaffold’ from a synthetic to a vector space structure, and so operates imm
diately in a vector space.

Choquet and Papy adopt a similar type approach in their courses. The
both begin with a set of basic (affine) acioms and graduate develop an algebra
structure on the plane by the addition of more synthetic axioms as require
However, there are areas of difference. For example, whereas Choquet assum
distance on a line and he real numbes, Papy uses graduation of the line t
develop these concepts. . k

They are all agreed, however, that linear algebra gives us what Choqui
calls a ‘royal road’ to geometry.

Before discussing the feasibiity of introducing geometry via linear algeb"
into second level school courses, it might be fruitful to outline some advanta

 of such an approach. One fundamental advantage is that, with linear algebra,

~ ‘there are few mathematical concepts simpler to define than those of vector

analysis, geometry and topology. Consequently there is great advantage to be
gained from acquainting the young student at an early stage with the essential

- this point is that a linear algebra approach to geometry would bring second

ot all one way, we should note that geometric concepts and constructions

linear algebra more accessible to schoolchildren.

Approaches To School Geometry

‘everything in elementary geometry can be obtained in a very straightforward
manner by a few lines of trivial calculation’ (3, p.10]. This is a powerful
benefit, particularly when coupled with the fact that, in linear algebra, we
have a theory ‘where everything is ordered naturally around a few simple
central ideas which also form the basis for later studies’ (3, p.10}; after all,

space and linear mapping’ (3, p.11].

Another advantage is that linear algebra ‘has become one of the most effi-
cient and central theories of modern mathematics. Its applications now range
over a wide and rich field, from the theory of numbers to theoretical physics,

principles underlying this branch of mathematics’ [3, p.10]. Closely allied to

level mathematics courses more into line with university teaching (3, p.10].
To show that the advantages of applying linear algebra to geometry are

give ‘life’ to some of the ‘drier’ areas of linear algebra and so should make

The final two advantages are inextriciably linked: ‘From a mathematical
point of view, the most elegant, mature and incisive method of defining a
plane is as a two-dimensional vector space over the real numbers having an
nner product’ [2, p.14]. Along with this we have the that the concepts of
vector space and inner product, with their developments, give us a logically
perfect ‘royal road’ to geometry which we cannot afford to improve.

We will now look at the question of a linear algebra approach to geom-
etry in schools. If we assume that geometry should be taught in secondary
schools {either as part of the core curriculum or as an option extra) it is worth
considering if we should remain wih the old synthetic (congruence) approach
or whether a change to linear algebra would be beneficial. (Time constraints
on the curriculum probably precludes a proper treatment of both.) In the
urse of this project we gathered some information on the second level ge-
metry syllabuses of about eight countries (West Germany, Sweden, Belgium,
ance, England, Switzerland, Portugal and Canada) and in most cases (parts
France, in particular, being exceptions) it appeared that synthetic methods
e still prefered, with scant and superficial regard given to linear algebra.

The main arguments against a linear algebra approach to plane geometry
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are outlined in Prof. Barry’s article {0]: ¢ ... to subjugate geometry to lin.
ear algebra leads to an impoverishement of geometry. They (i.e. these who
favour an old-fashioned (congruence) approach to geometry) value the visual
as a helpful rewarding method of reasoning, they are reluctant for pedagog.
ical reasons to impose extra unnecessary layers of abstraction on the young,
and they value how mathematics can arise naturally in the small in geometry,
growing from simple to more complex situations, in contrast with having to
deal from the start with a large, abstract, complex system’. There are ¢
sentially two criticisms of linear lagebra here, which can be summarised as
follows:

(i) An implicit criticism that the ‘visual’ is lost when linear algebra is applie ;
to geometry. :

(if) That increased (and unnecessary) abstraction is unhelpful to the young

We will examine these in order:

(i) The first thing we note is that the visual is not totally lost when
we move over to linear algebra. Dieudonne himself recommends the use of
instruments such as pantographs and affinographs to instil the idea of the:
‘geometric transformation of the plane or space as one entity’. He also suggests
that the operations of vector addition and scalar multiplication in a two
dimensional vector space can be illustrated ‘by a few months working wi
squared paper’ and this ‘should be ample to familiarise pupils with the us
of these (vector space) axioms and to prepare acceptance of the fact that th
algebraico-geometrical edifice is founded on properties whose practical trut
is empirically demonstrable.

However we feel that the whole question of visual aids to reasoning involv
ing children between ages 13 or 14 and 17 or 18 shuold be examined mor
closely. There is a certain ambiguty in stressing the use of methods whic
encourage visual aids to reasoning whilst simutaneously telling children tha
diagrams in no way constitute a proof. The residual effects of this ambigu
ity are sometimes still apparent even at university. (If we look upon visua
aids to reasoning as a subset of intuition, then the case of probability theor
is applicable, where, if something is intuitively correct, it is most probabl
wrong). Clearly at primary level it is essential to use structures which are
concrete and easily visualisable, but perhaps at the 1sat, 2nd and 3rd years i
secondary schools we should begin to discreetly introduce abstract axiomati
systems, with the emphasis initially on concrete examples. (ii) We ha
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already touched upon this criticism in earlier parts of this paper. Clear!y ab-
stract systems cannot be introduced in the early primary years, but children
in secondary schools are introduced to mny abstract concepts and seem to be
able to deal satisfactorily with them. v

The question of the ‘necessity’ of introducing abstract linear algebra to d«'eal
wih geometry in secondary schools is the very point at issue, and ?o deal with
this properly would lead us into a critical discussion of synthetic methods,
which would lead us too far afield. Suffice to say that Papy, Choquet and
Dieudonne are convinced of the necessity.

A proper discussion of geometry a second level enevitably involves ques-

~ tions of mathematics and pedagogy. Whilst we have some little competence

to deal with the former, we are com mpletely ill-equipped to deal with the
latter. Our aim therefore is to raise questions and stimulate discussion, the

~ ultimate outcome of which, we hope, will yield a course which will simultane-
~ ously satisfy the degree of rigour required by mathematicians as well as being
~ accessible to children in secondary schools.
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NOTES

L
PiyPig """ Pi,
= Pr(4,)Prl4) - Pr(4:), (1)

The Euler ¢-Function and Probability

James Ward

and also

|A;, MA, N NA | =nPr(dp nd, N N4 (2)

Together (1) and (2) establish that the events Aj,...,Ax are independent.

The Euler p-function, ¢(n), where n is a positive integer, is defined as th ¢ follows that the complementary events AS,...,AS are also independent.

number of positive integers less than n which are coprime to n. @(n) may be
evaluated using the formula

-efi (-2

f=1

Pr(AS NASN...NA]) = Pr(AS)Pr(43) - Pr(4f)

= ﬁ(l—Pr(A;))=fI<1—'1f)- (3)

i=1 i=1 pi

where py,. .., pk are the distinct prime divisors of n, so that n = p** p3** - - - p’

Readers may be interested in the following derivation of this formula, which
was presented by Professor E. Eberlein in his lectures on introductory proba
bility and statistics during the Winter Semester of 1980/81 at the University
of Freiburg.
Let us consider the sample space {1 = {1,2,...,n}, and the experimen
of selecting at random a number from (2, all numbers being equally likely
to be chosen. Denoting by |X| the cardinality of the set X, we have tha
for any event X (i.e., any subset of (1), the probability of X is given by
Pr(X) = |X|/n. In particular, if A is the event that a number chosen al
random from {0 is coprime to n, then |A| = ¢(n) by definition. On the othe
hand we have |A| = nPr(4). The formula for o(n) will be established by
computing Pr(A).
Writing A; = {r € Q | p; divides r}, then it can be seen that

A=A{NASNn...N A} .

Now |4;| = n/pi, and so Pr(4;) = 1/p; for 1 <1 < k. ;
We now show that the events Aj, ... ,Ay are independent. Independence
requires that for every subset ¢1,%2,...,1, of the index set 1,2, ..., k, we have

Pl‘(A;l N4, nN...nN A,"_) == PI‘(A,'I)PX‘(A,'Q) .- ~Pr(A;r) .
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Integrating Inverse IFunctions

Brian M. Dean

The formula for the derivative of an inverse function is given in every &
calculus Lexthook, but is rarely, if ever, pointed out that there is also a formula
for the integral of an inverse function. The formula is: ‘

[ s =2t - [ 1)y (1)

where y = f7(z) or for definite integrals

s =@ - [ 1) @

where o = f~!(a) and f = f~1(b). The derivation of this formula is an easy
application of integration by parts, taking u = f~!(z) and v = z.

NOTES “ 83

The figure gives a graphical interpretation of (2) in the case where f is
increasing. The definite integrals give the areas M and N and the term
[a:f"l(:z:)]f; expresses M + N as the difference of two rectangles. A difference
picture is needed for decreasing functions — the details are left to the reader.

With this formula the integrals of many of the standard inverse functions
can be computed directly, without working through the details of integration
by parts in each case as Is usually done. For example,

/arcsinxda: = xarcsina:——/sinydy
= garcsinz -+ cosy

= =garcsinz +V1— 2.

Thus, if the integral of f is known, we can immediately write down the
integral of f~%.

Department of Mathematical Sciences
Kent State University, Kent, Ohio




Conference Reports

Edmund Robertson (St. Andrews) delivered the last lecture of the confer-
ence on “Nonabelian Tensor Products and Tietze Transformations”. He gave
a definition, due to Brown and Loday, of the (nonabelian) tensor product of
~ 9 groups equipped with actions on each other, and he stated several pertinent
results; which had been suggested by computer calculations.

In addition, Pat Fitzpatrick (U.C.C.) spoke on “Groups with Few Auto-
morphism Orbits”,

We would like to thank the lecturers, the sponsors, and the participants
for their continued support.

Conference Reports

Groups in Galway 1987

There were 20 participants at this year’s Group Theory Conference, sponsored
by the Royal Irish Academy, the Irish Mathematical Society, and University
College, Galway, which was held on Friday and Saturday 15th and 16th May
1987, at University College, Galway.
Ted Hurley (U.C.G.) gave the first lecture on “Tree Products”. He de-
scribed several free bases for the subgroups [V, X, ..., X] in the free product
of a nontrivial group Y and a free group X. Among other applications, it
follows that a result proved by P. Hall, about the nilpotency class of a group
which stabilises a series of given length in a group, is best possible.
Richard Watson (Maynooth) spoke on “Finite Varieties”, which are classes
of finite groups closed under the formation of subgroups, quotients, and finite
direct products. He discussed the properties of the complete lattice formed
by these classes: for instance, he announced that thls lattice is modular, and
asked whether it is dlstrlbutlve
Mike Holcombe (Sheffield) lectured on “Algebraic Methods of System Spec-
ification”. He considered the problem of the design of reliable hardware and
software for computers, and defined the concept of an Eilenberg X-machine,
which can be regarded as a model of computation.
Roderick Gow (U.C.D.) gave a survey of the problem of realising groups
as Galois groups over algebraic number fields. Every finite soluble group can
be so realised in infinitely many ways, and at least 19 of the 26 sporadic finite
simple groups are known to be realisable over the rational field Q. Hilbert
used Riemann surfaces to show that the symmetric and alternating groups
are realisable over @, and Gow has extended work of Schur, who showed
that, in certain cases, they are realised as the groups of generalised Laguerre
polynomla]s
David Simms (T.C.D.) enunciated the axioms for a Poisson algebra, and
showed how examples arise naturally in classical mechanics and the theory of
partial differential operators, in the symmetric algebra of a finite dimensional ,
Lie algebra, in the theory of symplectic manifolds and the representation the- There is no truth whatsoever in the rumour that it will be subtitled “100 years of Harte
ory of Lie groups, and (in a “super” form) from a Clifford algebra. d West"!

- Rex Dark

Cork Operator Conference 1987

This second edition of the Cork Operator Conference, subtitled “Operator
theory and operator algebras”, happened in Cork on Monday and Tuesday
-19th May, supported by the Royal Irish Academy, the Irish Mathematical
Society and he University College of Cork. From a list of 32 participants, the
keynote speakes were Gert Pedersex of Copenhagen, on “Means, extensions
and approximations involving unitary operators”, Weslaw Zelazke of Warsaw,
on “Generation of B(X) by pairs of abelian subalgebras”, and John Erdos
of London, on “Similarity of nests”. 15 other speakers came from America,
Canada, Poland, Germany, Japan, Scotland and Ireland.

It is confidently expected that a third edltlon of the Cork Operator Con-
ference will happen in 1988. !

Robin Harte
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Conference Announcements

ILTIAM 4 at NIHE, Limerick

The fourth in the series of ILIAM (Information Linkage Between Industry
and Applied Mathematics) conferences was held at NIHE, Limerick on 8 May,
1987. The ILIAM meetings are the initiative of the Mathematics Departient
at NIHE, Dublin.The concept has now developed into a cooperative effort
between that Department, the Mathematics Department of the University of
Ulsterand the Mathematics Department of NIHE, Limerick.

The objective of ILIAM is to provide over a one day meeting an opportunity
for industrialists and academic applied mathematicians to meet and discuss
problems of direct interest to industry. With the passing of each conference
the range of interaction between academic mathematicians and the industrial
community is broadening and deepening. The audiences at the meetings are
widely based including engineers and managers from the industrial sector and
engineers and mathematicians from the total third level educational sector
including the Universities, National Institutes for Higher Education and the
Regional Technical Colleges. Some mathematics teachers from the second
level system also attend. ‘ o

The presentations at ILIAM meetings are typically by industrialists .de-
scribing problems, involving mathematics, whch are of current interest in
industry or by mathematicians/engineers from educational institutions de-
scribing the application of mathematics to industrially oriented problems.

The programme of ILIAM 4, at NIHE, Limerick on 8 May, 1987 included
presentations by Mr. G. Hurley, Electronics Department, NIHE, Limerick
with title “Mathematics of Resonanant Phenomena in Transformers”; Mr. M.
Quinlan, Manager Director, Microelectronics Application Centre, Limerick
with title “MAC — An Interface Between Industry and the Applied Mathemati-
cian”; Mr. T. O’Dwyer, Analog Devices Ltd., Limerick with title “Mathemat-
ical Modelling of Semiconductor Devices”; Mr. J.J. King, Central Fisheries

Members on occasion have expressed a wish for more information on the
many Mathematical Conferences that take place throughout the year in many
parts of the world. We publish here only a selected few, usually those specially
requested by the organisers or of special interest to Irish Mathematicians. The
Notices and Bulletins of other Mathematical Societies contain some of these
and others. There are to our knowledge two other publications which are
devoted entirely to announcements of Conferences and which are very com-
prehensive and all-embracing. One is the European Mathematical Newsletter
looked after by the Mathematisches Forschunginstitut Oberwolfach and the
 other is the IMU Canberra Circular looked after by Bernhard Neumann. One
great thing about these is that they are sent free of charge to those who ask
for them! The full addresses are given below.

EUROPEAN MATHEMATICAL NEWSLETTER
Mathematisches Forschunginstitut Oberwolfach,
Geschaftsstelle: Albertstrasse 24,

D-7800 Freiburg im Breisgau.

West Germany.

IMU CANBERRA CIRCULAR

Professor B. H. Neumann,
Division of Mathematics & OR Department Of Mathematics,

Board, Dublin with title “Washout of Submerged Vegetation in Irish Lakes”; Statistics, Institut:e of Ad'vanced S.tudl.es,
Professor D. Conniffe, Economic and Social Research Institute, Dublin with ti- ‘ CSIRO, Australian National University,
tle “Experimental Design in the ‘Real’ and Social Sciences”; Mr. P.J. Shields Box 1965, GPO Canberra, Box 4, GPO Canbex:ra,
and Mr. G. Silcock, University of Ulster, Jordanstown with title “Mathe- ACT 2601, Australia. ACT 2601, Australia.

matical Models in Fire Safety Engineering”; Dr. J. Carroll, Mathemati
Department, NIHE, Dublin with title “Numerical Analysis of Semiconductor
Devices”; Mr. C. Humphreys, Howmedica Int., Limerick with title “Comput
Integrated Manufacturing”.

P.F. Hodnett
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Groups In Galway 88

The first Groups in Galway mecting was held in 1978, It has been decided to
celebrate the tenth anniversary by adding an extra day to the usual (two—duy)
format. The 1988 mecting will commence after lunch on Thursday May 26
and conclude after lunch on Saturday May 28.
Further information will be circulated carly in 1988. In the meantime
please note the dates and start planning to join in the celebrationsl :
Any enquiries should be addressed to:

Dr. J. McDermott
Groups in Galway 88
Department of Mathematics
University College Galway
Galway, Ireland.

BAIL V Conference — Shanghai, China,

BAIL V, The Fifth International Conference on Boundary and Interior Layers
— Computational and Asymptotic Methods, will be held on June 20-24, 1988
in Shanghai. This conference provides a forum for the discussion of numerical
or asymptotic methods for the solution of problems involving boundary or
interior layers. The registration fee for participants living outside China is
US$260 if received by January 31 1988 and US$320 thereafter. Hotel costs
are US$20 per person per night for persons sharing a twin room and US$30
per person for sole occupancy of a twin room. The cost of meals, including
the conference banquet, is US$20 per person per day.

Inquiries from individuals living outside China should be directed to the
conference organizer in Dublin:

Pauline McKeever
Conference Management Services
P.O. Box 5, 51 Sandycove Road
Din Laoghaire, Co. Dublin
Ireland.

|
L
|
|
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Conference Announcements 89

Fourth Dublin Conference on Matrix Theory
and. its Applications

A two-day conference on Matrix Theory and its applications will be held in
University College Dublin on March 10 and 11, 1988. Papers are invited on
any aspect of linear algebra. The deadline for receipt of abstracts is January 15
1988.

The conference fee is IRL10 (or US$15). All correspondence should be
addressed to the conference organizer:

Dr. F.J. Gaines
Department of Mathematics
University College Dublin
Dublin 4, Ireland.

ECMI 88

The first open meeting of the European Consortium for Mathematics in In-
dustry (ECMI) will be held at the University of Strathclyde on August 28-31,
1988.

The scope is wide and includes, for example, the mathematics of semicon-
ductor devices, control theory, nonlinear optimization and modelling, mathe-
matical software etc.

For further details, write to:

Conference Secretariat
Department of Mathematics
'University of Strathclyde
Glasgow, Scotland
JANET: CAAS29QUK.AC.STRATH.VAXA
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Hyperbolic Problems — Aachen 1988 BOOk RGVIGWS

The Second International Conference on Hyperbolic Problems will be held iy
Aachen on March 14-18 1988. Significant advances have been made in the
last few years in the exact and approximate solution of of systems of nonlinear ﬁ
hyperbolic equations and their applications. The aim of the conference is to S

bring together scientists in the field for a presentation of recent results and to =
discuss future research. Further information can be obtained from: o

ATLAS OF FINITE GrouPSs by J.H. Conway, R.T. Curtis,
S.P. Norton, R.A. Parker and R.A. Wilson
Clarendon Press, Oxford, 1985, xxxiii+252pp. ISBN 0-9-8531990

Rolf Jeltsch
Institut fiir Geometrie und Praktische Mathematik
RWTH Aachen
D-5100 Aachen, Federal Republic of Germany
EARN/BITNET: JELTSCH@DACTHS51

The classification theorem for finite simple groups, which was completed around
1080, stated that a finite non-abelian simple group is an alternating group of
degree at least 5, a group of Lie type, or one of the 26 sporadic groups.
The first priority of the authors of the Atlas is to print the ordinary char-
_acter table of as many of these groups as possible since it is their view that
this is the most compendious way of conveying information about a group to
a skilled reader.
; With the infinite families their guideline was “to think how far a reasonable
person would go and to go one step further”. Thus A;3 is the largest group
considered in the alternating series. A group of given Lie type is specified
by two parameters, rank and field size. For low rank a variety of field sizes
may be shown while for the highest rank only the smallest field size is shown.
For example, the character tables of PSL(2,q) are shown for ¢ < 32, while
for rank 4 only that of PSL(5,2) is shown. All of the sporadic groups are
included.
In addition to the ordinary character table the authors present information
about the maximal subgroups (nearly always complete), the Schur multiplier,
the outer automorphism group, the character table for the corresponding cov-
eing groups and extensions by automorphsims (in most cases), as well as
various constructions of the simple group or a near relative.
The book has A3 format pages and is spiral bound. The introduction,
pages i to xxxiii, consists of eight chapters in which the simple groups are
descibed and explanations are given on how to read the tables and text in the
two hundred and fifty two pages of the main body of the Atlas which follow.
The authors seek to reinforce trends in notation that they see as desir-
able. One of these is Artin’s convention that single letters are used for groups
that are ‘generally’ simple, for example, L,(q) for PSL(n,q), and S2n(q)
for PSp(2n,q). This can lead to some confusion, for example, Un(q) for

International Conference on Radicals — Sapporo, J apan

An international conference on “Radicals — Theory and Applications” is to

be held in Sapporo from July 24 to 30, 1988. Further information can be had
from: s k

Prof. Shoji Kyuno
Department of Mathematics
Tohoku Gakuin University
Tagajo, Miyagi 985
Japan
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PSU(n,q). The chapter on the classical groups is a model of conciseness and
comprehensiveness.

I felt the introduction is marred in places by notations being used before
their definition. For the expert this poses no problem, but for the neophyte it
means that the introduction may have to be read several times.

How accurate is the information in the Atlas? I quote the authors

“ Any complacency we might have had in this regard was rudely
shattered when the pre-publication version of the table for the
outer automorphism group of the Held group was found to con-
tain an error affecting 22 entries (but obeying the orthogonality
conditions)!”

Still, the existence of the Atlas means there can be an agreed starting point
for the correction of errors. This together with the existence of the alternative
CAS system of Neubuser, Pahlings and Plesken augurs well for the hope of
completely correct tables in the near future. The next step would seem to
be the production of tables of modular characters, at least for the sporadic
groups, and I believe this project is already well under way.

This book is a must for everyone interested in finite groups. Most obvi-
ously it collects in one place an enormous amount of information oh many
of the most important groups. It can accommodate users of various levels of
sophistication. it can be used to answer simple questions about, for exam-
ple, orders of centralizers and numbers of conjugacy classes of elements of the
same order or more sophisticated questions about, for example, the possible
subgroups a set of elements might generate or about characters of the covering
groups. Though only groups of Lie type for low rank and smallish field size
are included, these are often surprisingly typical of their families and so can
be good pointers in the framing of conjectures about their families.

Michael J.J. Barry
Department of Mathematics

Carysfort College
Blackrock, County Dublin

Book Reviews 93

THE SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS
by the late E. L. Ince and I. N. Sneddon FRS

Longman Mathematical Texts, Essex, 1987, 234 pp. St£8.95
ISBN 0-582-44068 8

This book is a welcome edition to the excellent Longman series of Mathemati-
cal texts. In it Professor Sneddon has re-presented and extended the material
covered by the Late E. L. Ince in his 1939 book published by Oliver and
Boyd. The aim of the book is “to provide in a compact form an introduction
to the methods of solutions of ordinary differential equations for students of
mathematics”. This book certainly achieves that aim, although I feel that it
provides more than an introduction.

The book begins by considering equations of first order and degree, and in
42 pages presents (a) motivation, (b) a discussion on uniqueness and existence,
(c) a discussion on various classifications, and (d) some classic equations. This
material of this chapter is presented very concisely and clearly. Examples are
used very effectively to illustrate all important principles. One almost feels
that if this chapter were expanded that students who understood every detail
would already be well on the way to having a good introduction to ordinary
differential equations. ,

Chapter 2 discusses Integral curves. I felt that there could have been more
discussion of qualitative solutions, and in particular phase-plane solutions and
stability. In Chapter 3 equations of higher degree are discussed, and well
presented and Chapter 4 discusses equations of second and higher orders, but
one might prefer to see the material of these two chapters presented at a
later stage of the book. Chapter 5 discusses linear equations and covers a
wide variety of material including Laplace transforms and Green’s functions.
I thought that the section on Green’s functions was very clear and gave a
good introduction to a topic that many students find difficult. There is an
Appendix on Laplace transforms which covers all that is necessary for this
chapter. In Chapter 6, solution in series is considered and Bessel functions
and Legendre polynomials are covered in some detail. Chapter 7, while short,
covers the basics of Linear systems of equations. The book includes some 375
problems, together with solutions, and interestingly they are not included at
the ends of chapters but as a group .
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PROBLEM PAGE

In summary I would recommend that most mathematicians should have
this book on their shelves. Any minor faults with the book are due to limita-
tions of space, but I do feel that it was a pity that not even a brief discussion ‘ Editor: Phil Rippon
of numerical solution of differential equations was not included, although Iam
aware that this omission was probably deliberate.

f First, here is a very pretty problem, which T heard about from Tom Laffey.
P. O’Leary . ) It appeared in the International Mathematical Olympiad 1986 at Warsaw, and
Dept. of Mathematical Physics  was the hardest problem set, in terms of the total scores of all candidates on
U.C.G., Galway individual questions. Nevertheless, several candidates solved the problem and
an American student, Joseph Keane was awarded a special gold medal for his

solution.

1. To each vertex of a regular pentagon, an integer is assigned in such a
way that the sum of all five integers Is positive. If three consecutive vertices
are assigned the numbers z, y, z respectively and y < 0, then the following
operation is allowed: the numbers z, y, z are replaced by = +y, —y, 2+ y
respectively. Such an operation is performed repeatedly as long as at least one
of the five integers is negative. Determine whether this procedure necessarily
comes to an end after a finite number of steps.

Next, a problem from John Mason at the Open University, who says that
it is known in Maths. Education circles as the Krutetskii Problem. I have

also seen it attributed to Lovacz.

2. A finite number of petrol dumps are arranged around a racetrack. The
dumps are not necessarily equally spaced and nor do they necessarily contain
equal volumes of petrol. However, the total volume of petrol is sufficient for
a car to make one circuit of the track. Show that the car can be placed, with
_an empty tank, at some dump so that, by picking up petrol as it goes, it can
complete one full circuit.

John Mason also asked the following apparently much harder problem. I
am not aware of any reference to this problem in the literature.

, 3. The petrol dumps are arranged as in Problem 2, but this time the total
 volume of petrol is sufficient for two circuits of the track. Can two cars be
placed, with empty tanks, at the same dump so that, by picking up petrol as
they go, they can each complete one full circuit in opposite directions? (The
cars may cooperate in sharing petrol from the dumps.)

RIA PROCEEDINGS

Members of tie Irish Mathematical Society benefit from a special discount of
one—third of the normal price on subscriptions to Section A of the Proceedings{
of the Royal Irish Academy. Orders may be placed through the IMS Treasurer
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Now, to earlier problems. Finbarr Holland has sent an alternative solution
to Tom Carroll’s problem:

If ¢, >0, forn=1,2, . then

ke a

n
Z e¢drtagtta, <1
n=1 )

Finbarr’s proof can be expressed most succinctly using the following pic-
ture:

ay agz An

The picture clearly demonstrates that

o o]
> apelortoattan) o /

n=1 Y

e Fdr=1.

This proof was shown to me recently by Aimo Hinkkanen also.

PROBLEM PAGE ~ 97

Next, here are solutions to the problems which appeared in December 1986.

1. The radii of the circles in the following expanding pattern (in which
the radius of the innermost circle is 1) tend to a limit which is approximately
8.7.

If at each stage we double the number of sides of the escribed polygons,
then the limiting radius can be found explicitly. What is it?

P In the above diagram the radius of the nth outer circle is

[cos(n/3) cos(w/4) - - cos(x/(n + 2))]

Since cos z > 1 — 22/2, the infinite product

] cos(mw/n) > ﬁ(l — 7%/2n%) > 0

n=3 n=3

because
[ve)
1
E ;‘2' < co.
n=1

If at each stage we double the number of sides of the escribed polygons,
hen the radius of the n th outer circle is
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We may assume that

-1 p(z) =2 + Az +p, A, p rational.

[cos(7/3) cos(7/8) -- ~cos(m/(3.2"71))]

The conditional for p to have rational zeros is

This prodyct can in fact be simplified by a trick due to Euler, based on
the half-ang]

e formula: A2 —4qp =32 , s rational.

sin @

— Now
cos(0/2) = 2sin(0/2)’

0<d<2m.

. f(z) = (p(z) + p'(2)) e = (932 +(/\+2)x+p,+/\) e”,
Repeated uge of this formula gives

and so the condition for f’ to have rational zeros is

sind  sin(6/2)  sin(d/2""1)

. 2 — i 2 : i
cos(0/2) cos(0/4) .. cos(t?/zn) - 25m(0/2) 2sim(6/4) 2sin(0/2") (A+2)? —4(p+ 1) =12, t rational,
sind which reduces to
27 sin(6/2") ' P +a=12, (1)

Since most termg cancel. If we now use the fact that Similarly, the condition for f” to have rational zeros reduces to

sin(6/2") =1 t2 44 =102, u rational. (2)
e T 0j2r ,
Multiplying (1) and (2) by the common denominator of s2, 2, u?, we obtain
t .
hen we obgaiy ) o,
] a?+d? =} .
o " sin § B2 = 2 a, b, ¢, d integers (3)
H cos(8/2") = ;

n=1

Now we use the method of infinite descent to show that thre are no solu-
tions to (3). The idea is to show that if a solution a, b, ¢, d to (3) exists, then
it is possible to construct a smaller solution @, B, 7, 6 to (3). Repeated appli-
cation of this argument leads to a contradiction, and so (3) has no solutions.

We need a well-known result on Pythagorean triples (see almost any book
on number theory).

On substituting 6 = 2m/3, we get

0 no1y _ sin(27/3) 3\/?7.
H cos(m/(3.2 )= 2r/3 drr

Hence the limiting outerradius in this problem is 47/3+/3 =~ 2.42.

possible for f y [ and f" to have rational zeros?

This problem, was told me by John Reade at Manchester. Unfortunately
. € d
for setters (ang solvers!) of curve-sketching problems, the answer is ‘no’. Her

is John’s solutiop to the problem.

: Lemma If 22 4 42 = 2%, where z, y, z are comprime, then z is odd and

; atic with integer coeflicients, is i exactly one of z, y is even. If z is even. then
(z)e®, where p 1s a quadr E ' J Y ’

T = 2uv, y=u2—vz, z+u2+v2,

for some comprime integers u, v.
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If the equations (3) have a solution a,b,c,d, then we may assume that a,
b, ¢, d have no common factors, and lhence that each pair is comprime. The
lemma now implies that b, ¢ are odd, so that d is even and a is odd. Hence

PROBLEM PAGE

First we check that any sum of consecutive integers must have an odd

factor (> 1). Here is one way to verify this:

The sum of an odd number 2m + 1 of consecutive integers can be written

in the form:

1
h:i—(a+c), Ic=72-(c~—a)

(n=m)+ -+ (n-D+n+(n+1)+-+(n+m)=2m+n; (4)

are positive integers, and it is casy Lo check that

K2 k= b2, 2hk = d*. f -

the sum of an even number 2n of consecutive integers can be written in

Also h, k arc comprime with each other and with b.
the form:

Now suppose that h is even (the argument is similar if k is even). Then,

by the lemma
) o (m=-n+1)+ 4+ m+(m+1)++m+n)=02m+Yn. (5
Nom— o

h=2uv, k=u"—v", b=u?4 0%,

where u, v are comprime. Thus

This proves that the integers 1,2,4,8, - cannot be expressed as sum of
two or more consecutive integers.

At first sight, it seems much harder to prove that all other positive integers
can be expressed in this way. However, any other positive integer can be
written in the form (2m + 1)n, where m, n are positive integers. Moreover
~we have either n—m > 1or m—n+12> 1. Hence (2m+1)n can be expressed,
as the sum of consecutive positive integers using either (4) or (5).

d? = 2hk = duv(u — v)(u+ v},

where u, v, ¥ — v, u+ v are pairwise comprime. Hence each of u, v, u—v,
u -+ v is a perfect square, say

2
u=f",

Since this gives

u—v=a2,u+v=72.

v=162,

o? + 62 B*
ﬂ2 +52 — ,72

and B* = u? < b, the proof that (3) has no solutions is complete.

fl

Phil Rippon

Faculty of Mathematics

Open University

Milton Keynes, MK7 6AA, UK

3. Which integers can be expressed as the sum of two or more consecutive |

positive integers?
A quick check of the integers 1, 2, 3,---, 10, say, suggests the conjecture
that all positive integers except the sequence 1, 2, 4,8, can be expressed
in this way: 3 =1+2,5=2+3,6= 1+24+3,7T=3+4,9=4+5,
10=1+2+3+4.
This conjecture turns out to be true and, surprisingly, there is an ‘easy’

proof.




Additions to:

“CONSOLIDATED INDEX OF ARTICLES”

The last issue contained a consolidated index of all the articles published
in the IMS Bulletin (formerly the IMS Newsletter) since its inception. How-
ever,the first issue was unavailable at the time this index was compiled.

Issue 1 (1978) of the IMS Newsletter contained the following articles:

e T.J. Laffey, “Polynomial Identities and Central Identities for Matrices”
pages 11-16.

o F.J. Gaines, “Matrices in Europe in the 13th and 1{th Centuries”,
pages 17-23.

The following article was also omitted from the Consolidated Index:

o T. Hurley, “Matriz: Computer Assisted Mathematics Teaching”, IMS
Bull. 16, 1986, 61-67.
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