standing objection that universities (sic) have been over-
That objection

influencing second-level mathematics syllabi.
is concerned with topics such as linear programming, vector
analysis, calculus, even parts of trigonometry on the L?wer
Leaving Course; it is concerned with linear transformations,
convergence of sequences and series, probability, groups, .-

on the Higher Course.

The authors of the article about UCC students want the
third-level sector to influence second-level syllabi. I
think I know in what way, but perhaps ;hey would spell it out?
And I would like to know what recommendations they or other
third-level people would make for primary level. Finally,
given the composition of syllabus committees heretofore, how

el
are all third-level interests to be represented from now on:

Michael Brennan

SECOND INTERNATIONAL CONFERENCE
ON

HYPERBOLIC PROBLEMS

THEORY, NUMERICAL METHODS AND APPLICATIONS

March 13 to 18, 1988

Place: RWTH Aachen, Federal Republic of Germany

address all your correspondence to: Rolf Jeltsch,

Institut fuer Geometrie und Praktische Mathematik,
RWTH Aachen, pD-5100 Aachen, Federal Republic of Germany.
Phone: (0241) 80 39 50. Arpanet: NA.Jeltsch at SU-Score.
L__v EARN/Bitnet: Jeltsch at DACTH51.

-8 -

AN ESSAY ON PERFECTION

Micheal 0 Seanchid

1. ABSTRACT

A recent result of Murphy (2] concerns operators on a
given infinite dimen§ﬁonal Hilbert space Il. It states that,
given a non-empty coﬁpact subset K of the complex plane, there
exists a non-diagonglizable normal operator on H whose spectrum
is K, if andfznly if K is uncountable. To effect this result,
the operator theorist must use a well known result in topology,
namely, that every uncountable separable metric space contains
a perfect set. This excursion into topology led us to inves-
tigate how far the conditions of separability (in the metric
space case this is equivalent to second countability) and met-
rizability can be stretched. We give below some general res-
ults about topological spaces which must contain perfect sets,
and we produce a series of counterexamples to show that the

conditions we have imposed on the spaces are indeed quite sharp.

2. INTRODUCTION

We recall firs?ly that a subset of a topological space X
is said to be perfect in X if it is non-empty and is equal to
the set of its limit points in X.

We now generalize the notion of compactness in the foll-
owing definition: let 2 be a transfinite cardinal number and
let X be a topological space. X is said to be f-compact if
every open cover for X has a subcover of cardinality less than
Q. It is clear that X is compact if and only if X is ¥Wo-

compact, and that X is Lindelof if and only if X is Xl—compact.

In what follows, we shall be concerned also with a gener-

alization of the concept of a 66. We shall consider a Ltopol-

oglcal space which has the properlty that cach singleton subsct

=9 =




of it can be expressed as the intersection of open sets whose
number is less than Q, where @ is a given transfinite cardinal
We note that any space which satisfies such a prop-
Also, when 0 = X, the prop-

number.
erty is necessarily a T, space.
erty is equivalent to that of each singleton set being a Gg.

We note also that every singleton set in a first countable T,
space is necessarily a Gg; and further that a compact Hausdorff
space has the property that each of lts singleton subsets is a

Gg if and only if it is first countable.

For all other topological definitigns, we follow Kelley

(1.

3. TOPOLOGICAL RESULTS
We begin with an elementary lemma, which mimics the compact

case:

Let Q be a transfinite cardinal number and let X

Let Y be a closed subspace

3.1 LEMMA.

be an Q-compact topological space.

of X. Then Y is also Q-compact.
PROOF . Suppose (Ua)aeA is an open cover for Y, where A is

Then, for each a € A, Ua = Va N Y for some
set V, open in X. Then X \ Y U (V“)aeA is an open cover for
X, so there exists a subset B of A with card(B) < @ such that
Then (Uqh€ p covers Y.

some indexing set.

x\yUu (Vu)ueB covers X.
We are now ready to prove our main theorem:

3.2 THEOREM. Let T and Q be transfinite cardinal numbers

with T s Q.
T-compact and in which every singleton subset can be expressed

Let X be a regular topological space which 1s

as the intersection of 20 open sets. Suppose card(X) z Qi

then there exists an T-compact subset of X which is perfect

in X.

PROOF. Let T = {x € X: VN € Nbd(x), card(N})z Q).

show that T is perfect in three stages.,

We shall

(a} Firstly we show that if Y is any closed subspace of X with
7

card{(Y) z Q, then Y N T £ p. Indeed, suppose, on the contrary,

that ¥ N T = §; then, for each y ¢ ¥, -there exists an open

Now Y
is T-compact by 3.1, so there is a subset V of Y of cardinality
less than T such that/

i

|
7
¢

neighbourhood Ny of y with cardinality less than Q.

\ YCUN,.
yev ¥
This leads to the contradictory conclusion that card{Y) < 0

Hence we have T N Y # ¢; in particular, T is not empty.

(b) Secondly, T is closed in X, for, if x is any element of
X and if N is a neighbourhood of x which has non-empty inter-
section with T, then N is a neighbourhood of some point of T
and hence has cardinality not less than 0. So T is closed
in X, and T is T-compact by 3.1.

{c) Thirdly we show that every point of T is a limit point
of T. Let t € T, and suppose that K is a closed neighbourhood
of t; then

card{(K \ {t}) z Q.

L .
et (Ni)iE I be a family of open sets of X with card(I) < Q
which satisfies

(t) = N N,.
iel 4
Then

K\ (6) = U (K\w)

ierx
He
nce wg have card(K \ Ni) 2 N for some i€ I.

Part (a) of the proof now allows us to deduce that

TN (K\ (t)) # ¢.




Since X is a regular space, this is sufficient to conclude that

t is a limit point of T.

Hence T is perfect in X.

Some notes regarding the separation property of our top-

ological space are in order. Firstly, a T, space is regular

£ and only if it is compact Hausdorff. Secondly,
These con-

and compact i
a regular Lindelof space is necessarily normal.

siderations account for the formulation of the following two

special cases of our theorem:

Let X be a first countable compact Haus-

3.3 COROLLARY (i).

dorff space. If X is uncountable, then X contains a perfect
set. .
(ii) Let X be a normal Lindelof space 1n

i i ble, then
which every singleton set 1s a Gé. If X is uncounta '

X contains a perfect set.

PROOF. This is precisely what theorem 3.2 says when

Ro and Q =Rl.
= N,

(i) T

n

(ii) T

Tt is well known that a compact llausdorff space is met-

rizable if and only if it is second countable. It is well

ind the reader at this point that there do exist first
econd count-

to rem
table compact lausdorff spaces which are not s
n the order

coun '
able. For an example, consider {o,1) x (0,1) i

topology induced by dictionary order: (a,b) ¢ (c,d) means that

either a < ¢ or both a = ¢ and b ¢ d.

Actually, since evefy second countable space is heredit-

arily Lindelof, the general theorem for these spaces is much

more easily stated:

3.4 THEOREM. Let X be an uncountable second countable top-

ological space. Then X contains a perfect set.

PROOF ., Let T = (x € X: VN e Nbd(x), N is uncountable).
Since every subspace of X is Lindelof, an argument similar to
that of 3.2(a) shows that T has non-empty intersection with
every uncountable subset of X. So X \' T is countable, and
it follows immediately that every point of T is a limit point
of T. That T is clésed is proved as in 3.2(b).

perfect and the result is proven.
{

Hence T is

We should like to investigate now the necessity or other-
wise of the toplogical conditions which we placed on the space
X in theorem 3.2 in order to ensure a successful outcome.

The following three examples are instructive:

3.5 EXAMPLE. Let X be any set with the.discrete topology.
Then X is Hausdorff since all subsets are clopen; X is first
countable since each singleton subset is open; and X is locally
compact since each singleton set is clopen and compact. Yet,
whatever 1ts cardinality, X contains no perfect set because

all its points are isolated.

3.6 EXAMPLE. Let Y be an infinite set and let yeVY. We
define a toplogy on Y by declaring as open each set whose com-
plement is finite or whose complement contains y. Then Y is
Hausdorff since there is only one singleton set in Y which is
not clopen; Y is compact since each open cover for Y contains
a neighbourhood of y, which necessarily has finite complement;
yet, however large the set Y is, Y contains no perfect set,
since only one of i&s points is not isolated.

3.7 EXAMPLE. Let Z be any non-empty set and let z ¢ 2.

We define a topology on Z by declaring as open each subset of
Z which does not contain z, and Z itself. Then Z 1s compact
since every open cover for Z contains the only neighbourhood
of z, namely Z; Z is first countable since z has exactly one

neilghbourhood and every singleton set other than (z) is open.
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Yet Z, regardless of

space for the same reason.

z is a T,

its cardinality, contains no perfect set since only one of its

points is not isolated.

This last example is not as satisfying as the other two.

Although 2 is Tg, it is not T,, and although it is first coun-
table, not every singleton set can pe expressed

Ideally we should have liked to find

as the inter-

section of open sets.

compact first countable T, space which contains

an uncountable

no perfect set.

Example 3.5 shows us that the essential role played by

T-compactness in the proof of 3.2 cannot he assumed by any loca!

property. It is true, however, that a local property is suff-

jcient to provide us with a converse of the most special case

of our theorem:

3.8 Let X be a locally compact Hausdorff space.

If X contains a perfect set P,

THEOREM.
then every set 1In the relative

topology of P» other than @, 1s uncountable.

and let U be an open

PROOF . Suppose P is a perfect set in X,
set in X which has non-empty intersection with P. Then U NI P
is closed in X so is locally compact. Now, U N P is a T, spac

U nP.

each of these sets is also

so each of the sets (U nPp)\ (t) (teUNP) is open in

since P is perfect,
TN P is a locally compact regular space
\ (t) is dense
Tt follows that

Furthermore,
dense in UnP. Now ,
so EEEE‘Baire's theorem holds; hence tQ I(U n P)
in U n P for any countable subset I of UN P.

uNPis uncountable.

We are now in a position to state a necessary and suff-

jcient condition for a certain type of topological space to

contain a perfect set. Moreover, we can jdentify that part

of the space in which perfect sets must lie:

- 14 -

3.9

space.

THEOREM. Let X be a first countable compact Hausdorff

Then X contalns a perfect set if and only if X is un-

countable. In that case, every perfect set in X is contained

in T, where T = (x € X: every neighbourhood of x is uncountable)
PROOF . By 3.2 and 3.8.

Of course it is not true that all perfect sets are uncoun-

table. The most primitive counterexample to that conjecture

3 2 {
is an indiscrete space of tw i
P ; two elements. This is compact,

first countable and berfect in itself. A more formidable

counterexample would be any countably infinite set with the
finite complement topology. This has all the above properties

and is a T, space besides.

We have proved a converse to 3.3(i). Any attempt to

produce a converse in general to the main theorem is, however
v

A In fact, the converse to our second spec—'
jal case is easily seen to be false.

doomed to failure.

The set of rational
numbers with the usu;l metric gives us a normal first countable
T, space, as all metric spaces do, which is Lindelof since it
is countable. This set is clearly perfect in itself, yet is

not uncountable.

This last counterexample brings to prominence that per-
petual defect of the rational numbers - that they are incom-
plete.
text.

Complete metric spaces behave well in the present con-
Indeed, theorem 3.8 has a companion theorem, proved
in exactly the same way:

3.10 THEOREM. Let X be a complete metric space. If P is
a perfect set in X, then every set in the relative topology

of P, except for §, is uncountable.

It should be added that complete metric spaces do not nec-
essarily contain perfect sets even when they have large enough
cardinality. Indeed, any set can be endowed with the discrete

n . .
etric to produce a complete metric space;j as we have already
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noted, no discrete space contains a perfect set.

In mektric spaces, we can 1ook for perfect sets which are

small in the sense, of the metric. Our main theorem yields

us a result:

3.11 THEOREM. Let Q be a transfinite cardinal number. Let

X be an Q-compact metric space an
then there exists an Q-compact

d suppose card(X) z Q. Let

€ be a positive real number:i
subset of X which 1is perfect in X and whose diameter is not

greater than €.

The open balls {(x & X: dist(x,a) ¢« e} {a € X) cover

PROOF.
rdinality less than €

X; therefore some subset of them of ca

also covers X. Since card{x) z @, it follows that at least

one of the balls, say B, has cardinaﬁit
being a metric space, B is also T

y not less than Q.

Now B is Q-compact by 3.1;

and first countable. Theorem 3.2 now furnishes us with an

Q-compact perfect set in B, which is also of course {1-compact

and perfect in X. Its diameter does not exceed E.

This leads us to a very special case indeed, where we can

say a little more:

3.12 THEOREM. Let X be a subspace of R® where n is a natural

Let € be a positive real number.

number. We have:

(a) If X is uncountable, then X contains a perfect set of dianm

eter not more than €3 further, if X is closed, then this per-

. . n .
fect set is both perfect 1in R and compact in R™.

(b) If X contains a perfect set, then the closure X of X in

n
R" is uncountable.

(a) Since every, subspace of R" is Lindelof, the

PROOF.
The resulting perfect set P in

first part is given by 3.11.
solated point in R" and, if X is closed,

X certainly has no i
Since P is bounded

it is closed in 1R™, hence perfect in r".

it is also compact by the Heine-Borel theorem.

- 16 -

(b) If P is perfect in X, then it is clear that P is perfect

in X. X
in Since X 1s locally compact, the result follows from 3.8

REFERENCES

1. KELLEY, J.L.
’
General Topology', Van Nostrand, 1955.

/

2.  MURPHY, G.J. . /
"Diago i [ !
gonalizing Op?rators', ({to appear) 1986.

Rodinn na flutamaiiice,
Colaisle na hObLsrcoile,
Concadigh,

Eine,

REAL ANALYSIS
University of Ulster

An international symposium in Real Analysis will be
be held at the University of Ulster, Coleraine
7

Northern Ireland, August 9-12, 1987, as a tribute to

Professor R. Henstock

For further information contact:

Pat Muldowne},

University of.Ulster (Magee College),
Northland Road,

Londonderry BT48 7JL.




