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THE USE OF BERNSTEIN POLYNOMIAES IN CAD/CAM .. BEZIER CURVES

Danied . Dutty

INTRODUCTION

Many other techniques are available
for modelling curves and surfaces such as B-splines, cubic
splines, standard polynomial interpolation, parabolic blending
etc. A useful book on these topics is (2] (with code in
BASIC). We include Bezjer curves here for two main reasons:
first, their practical value, and, second, their roots in

classical approximation theory.

MATHEMATICAL BACKGROUND

nomial,

sense that neither the statement of the theorem nor its proof

allows us to construct the polynomial. The result goes as
follows.

[0,1]. Given € > 0, there exists an integer N > 0 and a poly-

nomial P(t) of the same degree such that
[E(E) = P(t)| < & for all te [0,1]. (1)

This result forms the basis of much numerical analysis, e.q.

numerical integration ang interpolation, finite element anal-
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al P which satisfies (1)

ysis etc. We note that the pOlyl\OU.\.
not n Y rp t g ype.
1S o} ECeSSa[ll OE inte Ola in t e

ial which
2) actually constructed a polynomi
{191 a

pernsteln The result is:

at;lsfled the C()Ildltl theorem.
S ons Of the

interval [0,1]).
tinuous function on the int
e a con

Let E(t) b . o
fine the nth degree polynomial P(f;
Defli
| . —. K 2
) nt eI -0)" Y E3/n) . (2)
pP(f;t) = .[ TTTn—371 ‘
i ; this

14 ]i
Then the ol converge uni(onnly on [0,'
3 i 8
)omlals P(f,t) ' ' .
h ] y’Ve” € ? 0 there exists an integer N SUC) that for
i ’
means that 81

all n z N we have

; (3)
|£(L) - p(f;t)] <& for all t;e {0,11.

For a proof of this result, see [31].
o

0 ER CURVES 1
o (2) we define the so-called contro

In representation

points | ) .
p = f(j/n) for J =0, ...,
bl
d the so-called blending functions
an
. s )
S E— P L (
By,nlt) = F{a-30
’

Y
In thls case wae can erte the Iesultl“g curve as a PO]. llou\lal

of degree n as follows:

) (t) (6)
= [ p.B. .
P(t) yz0 3 j,n

L)y
ion: let py = (Xg.¥y2y

K r equation: 3 ]

Notice that (6) is a vecto s of the control vertices and

e Then from (6) we have

j o= 0, coen Ny

. L)),
suppose Lthat P{t) = {x{t),ylt), =(

- A8 -

the following:

n
x{t) = jEO x)Bj,n(t)
n
y(e) = T yoB. (t)
=0 3 J.n
n
z(t) = jgo Zij'n(t)

These last three equatio@g form the basis for any computer imp-
lementation of Bezier cu%ves. Input for such a Program would
be the control pofnts and the number of subdivisions of the

interval 0 s ¢t ¢ 1.

ermine the number of points on the newly generated Bezier

This last Parameter will basically det-

curve, In most cases the code would be written in FORTRAN,

REMARKS

Only the first and last vertices of the polygon actually lie
on the curve; however, the other vertices define the derivat-

ives, order ang shape of the curve (see Fig. 1),

feeling for the CAD/CaM designer,

3. The number of polygon vertices fixes the order of the
resulting polynomial which defines the curve and furthermore,
the Bernstein basis has a global span, i.e, the values of the
blending functions given by (5) are‘nonzero for all parameter
values over the entire span of the curve, Thus, changing a
control vertex changes tﬁe entire curve. This eliminates ;he
Possibility of producing local change, These problems can be
Overcome but one must resort to the so-called B-splines (cf.

(43,




BEZIER SURFACES

Equation (6) can be generalized to three-dimensional sur-
faces by generating the Cartesian i

a vector
equation):
. n m
P(t,s) = | 7 (£)B, (s) (8)
) 120 51 i3 7i,n A 3,
; In this case we have tofinput (n+1) x (m+1) control points
{p,). For an implemertation of these surfaces, see [2), pp.
4 230-231, F
CONCLUSION

We are only able to give a

short review of one topic in a
fast growing area,

Many other techniques exist for approxim-
aces and new methods are

For a good introduction to Com
{4}, in particular pp, 309-331,

being constantly
puter Graphics, see

developed,

Some Bezier Curves and Associated Control ertex Po Yygor
o % 1 ons
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To demonstrate that a connected topological space may not
be locally connected, authors of modern text-books on point-
set topology usually employ an example, either of a geometrical
nature in the real plane {such as the so-called "topologist's
sine curve". and "infini#e broom"), or of a number theoretical
nature in the integers (lsuch as the "relatively prime integer
topology"), or of an anélytical nature in the real line (such
as the "indiscrefe or pointed extensions of the reals" and the
The
complete exposition of such an example tends to rely heavily

"one-point compactification of the rationals"; see [1}).

on a knowledge of the various intrinsic properties of the supp-
orting set. For the instructor who may, perhaps, prefer a
more abstract and topologically succinct example, an alternat-

ive is readily available.

Let X be an infinite set containing distinct points x,y.
A topology Tt for X may be defined by declaring open, apart
from @ and X itself, those subsets G of X for which y ¢ G and
either x ¢ G or X-G contains (at most) a finite number of points.
Observe that T = (v U e(x])) ] e(y), where Y denotes the well

‘known cofinite topology for X and €{x}, e{y) denote, respect-

ively, the excluded point tépologies (GEX : x ¢ G) U {X) and
(6ESX :y ¢ G U I(X) (see (1]). That is,
ion of a Fort topology Y U €{x) and an excluded point topology
elyl.

T is the intersect-

It is immediate that (X, T) is a connected space (since
T Cely) and (X,e(y)) is obviously a connected space). Let
Thus y ¢ U and
If z€ U, z # x, then.(z) and U-{z] are each

U be any proper Tt-open neighbourhood of x.
X-U i3 finite.
T-open {since y belongs to neither, x ¢ (z} and X-{(U-(z)) =
(X-U) U (2} is finite) so that U is not T-connected. It
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