ON THE EXISTENCE OF MAXIMAL LOWER BOUNDS

7.8.M., fcllasten

A lower semilattice is a partially-ordered set in which
each two elements possess a maximum lower bound or infimum,

and a routine induction argument shows that in such a system

every finite set also possesses an infimum. Many partially-

ordered sets, of course, fail to behave so nicely.
tion one classic example, we can impose a natural partial order

To men-

on the four dimensional space-time continuum of special relat-

ivity by saying that one 'event' (x,y,z,t) precedes another
{(x',y',z',t') whenever light from the first could reach the

'place' of the second at or before the "time' of the second,

£l

thus:

(x,y,z,t) s (x',y',z2',t') <

Ax-x")% + (y-y')?% + (z-2')% 5 c(t'-t)

where the positive constant c represents the speed of light.
It can be shown that in this structure the set of lower bounds
of two events (their "common history', so to speak) never poss-

esses a maximum element, except in the trivial case where one

of the events precedes the other. There is, however, in this

example and in many others, an abundance of maximal lower
bounds: the common history of two events is 'inductive' in the

sense described below. This note arises from an investigation

of maximal lower bounds for two or more elements; in particular
it concerns the failure of the analogue of the result referred

to in the first sentence above: inductiveness of the set of

lower bounds for each two elements does not imply the same

property for three.

Following Birkhoff (2] let us call a non-null subset A
of a partially-ordered set (E,s) inductive when to each point
x of A there corresponds a maximal point m of A satlsfying
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FIGURE 1

a, and L(X) = C has no maximal element.

We can, however, obtain further positive connections bet-

ween the conditions uL(a) either by imposing some additional

condition on the partial ordering, or by insisting that it be
compatible with a suitable topology. Note the following def-

initions: (E,s) is down~directed if each two of its elements

have at least one common lower bound, a subset of (E,s) is

called diverse if no two elements of it are commensurable, a

decreasing subset D of E is one for which x s y and Y& D to-

gether imply x ¢ D, and a partially-ordered topological space

{(E,s,1} is termed'T1—ordéred [4] if,

for each of its elements
x!

both L{x) and the set M(x) of all the upper bounds of x are
closed sets,
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has the finite intersection property, whence C has an upper
bound in M{z) N L(B); an application of Zorn's lemma now shows

that M(z) I L(B) has a maximal point, which is then maximal in
L(B) and lies over z: thus L{B) is inductive.

REMARKS

Bearing in mind the power and the widespread use of max-
imality arguments in ﬁany areas of mathematics, there are sur-

prisingly few references in the literature to the ideas here

presented. The only major investigation seems to be that of

Benado (see, . g. {1)) who explored in detail what we have herew

termed L (2)~systems (without the assumption of down- dlrected-

ness) but not uL(3) or beyond. The present writer's involve-

ment is due to an attempt to generalize the idea of a topolog-
ical semilattice - by which is meant a semilattice equipped

with a topology such that the map taking each pair of elements

to their infimum is continuous. If in an arbitrary down-

directed partially-ordered topological space one considers
continuity of the map taking each n-tuple of points to the set
of all their common lower bounds, having first made a sensible
choice of topology for the ranges of these maps, one gets a
hierarchy of conditions (for varylng n) each of which special-
izes to "continuity of the infimum" in the semilattice case.
It transpires ({see [5]) that the conditions M (n) are conven-

ient for obtaining satisfactory product theorems concerning
such bound-continuity conditions.

The exploration of these
conditions is still incomplete:

for example, no full understan-
dlng of when a sub-(order/topological)- ~system inherits them

has been obtained, and uL(n)—systems may well have a role to

play in this matter also.
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THE USE OF BERNSTEIN POLYNOMIAES IN CAD/CAM .. BEZIER CURVES

Danied . Dutty

INTRODUCTION

Many other techniques are available
for modelling curves and surfaces such as B-splines, cubic
splines, standard polynomial interpolation, parabolic blending
etc. A useful book on these topics is (2] (with code in
BASIC). We include Bezjer curves here for two main reasons:
first, their practical value, and, second, their roots in

classical approximation theory.

MATHEMATICAL BACKGROUND

nomial,

sense that neither the statement of the theorem nor its proof

allows us to construct the polynomial. The result goes as
follows.

[0,1]. Given € > 0, there exists an integer N > 0 and a poly-

nomial P(t) of the same degree such that
[E(E) = P(t)| < & for all te [0,1]. (1)

This result forms the basis of much numerical analysis, e.q.

numerical integration ang interpolation, finite element anal-
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