BANACH SPACE ULTRAPRODUCTS \
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_ This note presents a useful tool in panach space theory: THEOREM 1.1 space ultraproduct.
ultraproducts of Banach spaces: These provide 2 uniform let I be a ; Let K be a compact Hausd
on-
method for manufacturinq locally similar Banach spaces: In Foe wonh B ‘: empty set and U be an Iorf[ topological space;
mi ult . H
this way they relate 1ocal (finite dimensional) and global % Y (Xi)! in K rafilter on I.
. € K such that, fo ',J'G I , there exists a Then,
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/ eighbourhood point
/ V of x,
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Prerequisxtes are 1n gection 1 gection 2 contains defin- . Xi € V) eu

jtionse. Section 3 sketches some typ%cal applications in the ::z s:igt x is called the limit
local theory of Banach spaces. The conclusion mentions other enoted by lim x,. of (xi)ie T with respe
areas in which ultraproducts are profitably employed. Results u et to U,
for which no reference js given can pe found in (4] and (1]
which include pibliographies:- 2.  ULTRAPRODUCTS OF BANACIH
SPACES

L
et (g, |1 11

over C ) i € I) be .
(or R) indexed by the set a family of Banach spa
et I. ces

1. FILTERS AND ULTRAFILTERS U i
is an ultrafilter on I

To set up and handle ultraproducts of panach spaces eff- Define I, and N.. a
ectively. one requires some pbasic facts about filters and ultra- u s follows:
filters on sets. Mo = ((x,). )
i'lier * %1 € Ei’ sup Hx. 1] <
Let I be 2 non-empty set and pP(I) be the power set of I. e X * =
A filter on 1 is a subset F of PLI) such that: NU = ((xi)i e1 ® (x.)
i'ie Ielb,lim I'x'll - 0)
F1 ge F. tote et u i .
F2 Ae F, BEF imply M nBe F. unique by theo;emof (xi)ie 1 € Mo, lim x| '
;3 MAeF, ACGB — 1 imply B € F- i U ill exists and is
Let
AN ultrafilter on I is a maximal (proper) filter on I. BEquiv 3 Il be the supremum norm on Ig:
alently, U is an ultrafilter on I iff (1) v is 2 filter on I
and (2) for a1l x € P(I). x e F Aff I-X | F. ll(xi)ié IIl t= sup |[x,|]
Then L_((E,), i 1 ier ithe
is easy tolc;;Zi t;s the Banach space (M,, |]
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Pty s i 1} mod-

ily ((Ei:
h the canonical

)/NU wit

The ulcraproduct of the fam
Ei/U' (Bj)y 18

ulo U 1is the quotlent space lm((Ei)i 1

quotient norm;, and is denoted (Ei)U or ‘“01
ie€
called a Banach space ul;raproduct; in the case where Ei = E
for all 1 € 1 (Bl is also written EI/U and is rermed the
Banach space yltrapowver of E modulo U.
it is convenient and customary to denote elements of (Ei)U

by (Xi)U so that

(xi)U o= (xi)ie 1 + Ng.

y the

Notice that the quotient norm on (Ei)U is given b

equation:
ool o2 nienliu I RIPE S L NERIE

U of E there is @ canonical isometric

h ultrapover EI/
Tu:

For eac
g 1 of E into B

embeddin
i(x) = (xi)U where X; = x for all 1 e 1

LTl = 1im Pixgtl o= el le
U
are jsomet-

then E and EI/U

inite dimensional,
e compac

The closed balls of E ar
in E the 1imit

= 1%m \\xil

1f B is £
rically isomorphic.
ounded family (xi).1€ 1
.1) and \\1ﬁm xil\
a linear surjectio

for every b
in E (by theorem 1
+ 1lim x, is
i
isometri

map (X3)ie1 n
hence induces an c jsomorphism of ET/U and E.
osition introducés the theme of the

The following PTOP
ties of ultra

roper products.

structure—preserving P

The following classes of Banach spa

PROPOSITION 2.1,

closed under uyltraproducts:
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t so that

lim X, exists
U i

| so that the

n with kernel NU‘

ces are

(i) Banach slgebras
(ii) C* algebras:
(iii) C(K)-spaces:

(iv) LP spaces.

The class of JB* i :
triple systems is closed und
er ultrapowers

PROO[ ° To prove (i)’[ and (11) define the “atural "|Ultipllc

ation and involutionfon (E,),, =
i i‘u’

é

(%, )y o (y. ), 2=
TIERE LTS 7R ITRE C PR L B E
X i ‘o’

For (iii) not
e that C(K)
ultraproducts of -spaces are C*-algeb
r
Naimark the C(K)-spaces are C(K])-spaces bg thas anq henee
orem; . [}
m; (iv) requires the representat¥ e Gel'fand-
ion theorem for

LP spaces.

Finally, if (E, ||
[
[,y 4
then there exi ! s a JB* triple
sts M > 0 such system (cf. {2
that for all ° ])l
x,y,z2 € E

o0, s

y ) |os wlx] ] Tyl 1zl (*%)

so that (& ((E

ol )10 Il Il, ¢) is a JB* triple sy £
stem with
dl(x,)
lierr Wilger) #= Oy d)y

€I

N, 1s a J* §

U id

eal in & _((E)[) by (**) and hence (ef/u [ 1
' . )

is a JB* triple system.

3. UL : -
ES

One of the s ;
uccessful typi :
ultraproducts i ypical application
the stud fs is in the local theory of Ba hs of Banach space
y of the fini 3 . nach space
inite dimensional structure of B or d-e
anach spaces

and its relat g B P 7
ion to lobal structure In articular finite
£

representability -
¥y the most important concept of th
e local

theory h
- has a sim
ple powerful ultrapower charact
cterisation
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F is finitely represent-

Let E and F be Banach spacés.

able in E iff

for every finite dimensional subspace M

ists a finite dimens
and an i somorphism

for all € ? 0,
of F, there ex
E with dim N = dim M,
N such that

jonal subspace N of
¢ from M onto

el = (r+e) | Ixl ] ‘for all x € M.

A

(-elixll

The isomorphism ¢ is termed a (1+€) isomorphism. For

tion here are two results.

orienta

PROPOSITION 3.1.
(i} Every Banach space is finitely répresentable ijn itself.
(ii) Finite representabilicy is transitive.

presentative in R _»

the separable reflexive Banach space
. ne N} where

lp-sum of the family [1n :

(1ii) Every Banach space 1S finitely re

in C_» and 1in
ow
(0 L

nel n)p
i: js CM with su

? the

premum nporm (1 <p <)

The easy proof is omitted. Incomparably deeper is:

%, is finitely representable in every

THEOREM 3.2 (Dvoretzky).

infinite dimensional Banach spaceée.

The advertised characterisation of finite representability

is as follows:

F is finitely represencable in E iff there exists

THEOREM 3.3.
o a sub-

an ulcrafilte
space of EY/U.

r U on a set I such that F is isometric t

sitory note rhere is space
¢ feature of the proof of 3.3

index set I and the C

" PROOEF . In the format of an expo

just to isolat
in the choice of the

rafilter U on 1.

e one characteristi

which occurs
jon of the ult
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onstruct-

Let I be the sel ;
ct of all pairs (M,€) where M | £
s a finlte

me o pace of F and € » 0 ial Y Y
al nsional subs . Partiall order I b

¢z (My,ep) < |
My,Ez2) iff M
filter A with ¢ on I: 1< Mzoand €1 2 €2,

Associate a

Io € A iff Io < I and there exists (MO ,Co) € I with

I =
(‘MIE) € I H (MOICO) (,(M,E))

Extend A to an ¢
ul B
traflgter U on I.

§
;
H

Since F is. fini /
initely re
/ presentable in
: E: for each

1= (M
{ i,ci) € I, there exists a (1+¢€ i
. Ni(: .. i) isomorphism ¢i from M,.
i
(1-e)]x]|] s .
5 HEos Ileg6all s (1ee )] x| for all
X € M
it

Defi .
efine a mapping J : F + EI/U

X, = ¢i(x, 1 X € Mi'

0 otherwise

J q i Xy
iS the re Ulred llnear isomet
. :

Note in parti
icular that EI
in E f /U is fin 1
or any ultrafilter U on a non tite*y representable
~empty set I,

3.2 and 3.3 img
. mpl
formly convex infi ? Y tﬁat the modulus of convexit
by the inite dimensional Banach y of & uni-
modulus of convexity of % space is dominated
2

Ultrapower t i
echniques allow one to deduce inf
nformation on

the global
str
ucture of E from its local struct
‘ure, The re-

formulati
on of loc \
sower principles al principles results in correspondi
. on
One of the best examples of thi ng ultra-
is process is:

THEOREM 3.4

(

UltlapOWeI fIlllClple of lOCal Reflexlvlty)

Let E be a Banach space. There exist an ultraf Iter on a
1 U

set I and a i
mapping J from E** into EI/U
such that
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B . 1

(i) J is an jsometric embedding of EX* into B /U.
1

ical embedding T of E into g~ /0.

(ii) J\E is the canon
(iii) J(E**) is @ norm=1 complemented subspace of E /U,
e is @ projection p of nor®m ] onto J(E*¥).

i.€- ther
Reflexivity is der-
(**) for all

there

rapower principle of Local
al Reflexivity:

PROOEF . The Ult
jved from the principle of LocC
finite dimensional subspaces M BX¥,

is a (1+€) isomorp

N C E* and € 7 0,

() m\MﬂE = XMMQE’
(2) <E, 00X 7 x,fy for all X cM, £€N.
e the set of all

raking I to b
1traf11ter y on L.

rdered wlth an
g ~E /U

ed as in 3.3,

Now proce
triples {M,N,€) partlally 0
ugse (**) to define @ mapping J

, wi(x) 1€ x € My
Ju = (xi)U, xy =
0 otherwise-

parts (1) and (ii) follow.
. 1
To complete the proof, define 2a mapping Q /u g ¥

o= lim X,
i

Qlixy) y e
1’0 U
a pall

s of the close

ing E with its can-
quxred

k ¥ compactnes

ined (1dent1£y
get P 7 JoQ to obtain the re

{EX*) .

Note that by 1.1 and the wea

of E** the 1imi

onical jmage in E**) .
projection of norm 1 onto J
4 is this: jf B is @ class of panach

nder ultraprod

pro]ectlo
£ biduals,

ucks and cont

one corollary of 3.
if£ p* =P ana |11l 2

ch is closed U
contractlve
r formation ©

spaces whi

ections {(p is a
then B is closed unde

i.e.

E €8 implies gr* € B.
The class of Jn* triple gystems is closed under Contractivc
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ractive pro;

P OiC
7 )
r crions . edu }
t so from 2.1 one deduces the following recent

theorem of §. Dineen {2]

THEOREM 3.5
AULUREE S22 Let (E II
the bidual (E** ! Il: b be a JB* .
t
C 11 11, 60 is a JB* cripl riple system. Then
iple system

Intuitivel a
Y S 1s a prop
: ,. local property of Banach spac
es i
erty P such that if % has P, then every Banach y
space 1
% ocall

Super-properties are the math -

emat
Let P be any

similar to E also had P
ically preci f '
. tp ecise explication of this int
erty of B@nach R
spaces. E '
every Banach s e e
> perty s i
e : lSp jlflnltely representable in Eyh&uper-p o
ca ;
ed a super-property iff whe ARG
never E has P

then E has super-P

Examples of
super- .
super-reflexivity per-properties include: unif
y. the properties "E is finit orm convexity,
nitely repres
entable

in G" and "G
is not "fini
initely representable in £
or arbitrar
Y

fixed Banach space G

The super-properti )
can be ordered in : h:::Z of infinite dimensional Banach
super-property , the fi rchy: there is a weakest (trivi Shrees
and the strongest su irst (non-trivial) super- tvial)

per-property H.  Their defis§:§erty o
ons run:

H(E :
(E) : E is a Hilbert space
C{E) : c, i .
: i i
o o, is not finitely representable in E
. e n E.
: E is infinite dimensional
3.1 and 3.2 |
.2 show
that the. following implicati
ons hold:

H(E) = Q(E) =
C({E
implies too thaé é:f>W(E) where Q is any super
is equivalent to the su property. 3.2
per-propert
. y B;

D(E) : ¢ j ini 3
: 1s finitely representable in E

ere Y °
e n
C of C Here i1s a recent
Ther ar ma haracterisations |

one derivin
g from results in [3]. Let BD b
e the pro
perty:
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every pounded domain in the compleX Banach space
a finite

E is blholomorphlcally equivalent to
f irreducible complex Banac

BD(E)
product o h manifolds.

Then C is equivalent to super-BD.

Immediate conseguences of the hierarchy of super-properties

are:
(1) Hilbert spaces possess every super—property;

(2) if %2 fails to have a given super -property Q, then
ce has Qj

no infinite dimensional Banach spa

al with even one (non-

(3) 1if E is infinite dimension
then co is not finitely rep-

trivial) super—property,

resentable in E.

4. CONCLUSION
ce ultraproduct was developed initially in
d mathematical logic.

ce analogues of

The Banach spa
£ functional analysis an

prising to find Banach spa
t-order model theory: downward Loewenheim-

Keisler-Shelah theorem ({81, SRR A simple
f the Banach-Mazur

an interaction o
Thus it is not sur
theorems of firs
skolem theorem,
corollary of these results is a version o

theorem:

Assuming the continuum hypothesis,
which contains (isom~-

r %{1

Banach space of density
of ¢p

COROLLARY 4.1.
h space of density characte
every
there 1s an ultrapower

a Banac
y ijsomorphic copies of)

etricall
In fact,

character at most X

satisfying 4.1.

ultraproduct technigues to non-

Recent applications of
be found in {(71.

linear classification problems can
eneralized to

rial of Section 2 can be g
(61.

the mate

Finally,
of locally convex spaces (51,

define ultrapowers
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