EXTENSIONS AND K-THEORY OF C*-ALGEBRAS

G.J]. Muaphy

INTRODUCTION

The theory of C*- algebras is increasingly having an impact
on other areas of Mathematics, and on Mathematical Physics,
for example, on Algebraic Topology, Differential Geometry,
Topological Group Theory and Quantum Mechanics. Qur aim here
is to give an account, comprehensible ito the non-specialist,

of some of the most important recent results in this subject.

THE BROWN—DOUGLAS—FILLMORE THEORY

Let U be a Hilbert space (all vector spaces and algebras

are over the complex number field C)-. An operator T on I is

normal if T*T = TT* and such an operator is diagonalizable if
H admits an orthonormal basis consisting of eigenvectors of T.
Of course relative to such a basis T has diagonal matrix, and
on finite dimensional Hilbert spaces all normal operators are

diagonalxzable, but this is false in infinite dimensions: if

(en)n cz is an orthonormal basis for Il and if T in B(H) (the
algebra of all bounded linear operators on H) is defined by

Te = € .4 (n e 2) then T is normal and a trivial calculation

shows that T has no eigenvectors.

lHowever despite this negative result, in a certain sense
To be precise,

H. Weyl (1909) showed that if’ ‘H is a Hermitian operator (T = T*

normal operators are "nearly diagonalizable".

on a separable infinite-dimensional Hilbert space H then T is

a sum of a diagonalizable operator and a compact operator (an

operator K on H is compact if there is a sequence of operators
K with finite dimensional ranges such that ||Kn—Kl| converges
to 0 as n tends to =, where |].]1] denotes the operator norm

on B(H). From the point of view of Operator Theory compact

operators are "small", and adding on a compact operator to a
P

given operator only "perturhs' the operator "inessentially").
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By the way, the Weyl result fails if separability is dropped.
surprisingly, the extension of this result to all normal oper-
ators did not come until 1970 when I.D. Berg showed that every
normal operator on a separable infinite dimensional Hilbert

space is the sum of a diagonalizable and a compact operator

Now let us consider the set J+X of all sums D+K where D
is a diagonalizable and K a compact operator on H (henceforth
nowill al f infini i

ways denote afseparable infinite-dimensional Hilbert
space). Given an opefator T on II one could ask for a

tral condition" on T that T belong to D+X.

"spec-
. ’ This is not very
precise, but if T € D+X then its self-commutator T*T-TT* is
compact, i.e. T is essentially normal, One could now ask
(naively) do all essentially normal operators belong to D+/A?
The answer is no, and the explanation is elementary but reveal-

ing.

An operator S on H is Fredholm if it has closed range and
the spaces N(S) and N(S*) are finite dimensional (N( ) denotes

the null-space or kernel). We then define the Fredholm index

of S to be
index(S) = dimension N(S) - dimension N(S*)
One has index(S) = index(S+K) for all compact operators K, and
. I3 '
if S is normal, index(S) = 0. Now let (e ) be an ortho-

n‘neN
normal basis for H and let U be the operator on H defined by

Uen = e (n € N). U is called the unilateral shift and will

be referred to again later. , U is essentially normal and of
Thus U-.cannot be of the form diagonal +

compact, since any such operator is of index 0

Fredholm index -1.

It turned out that this index 6bstruction was the only
obstruction, but the proof of this required the introduction
of homological algebra teéhniques into Operator Theory. First
we shall state the results of the beautiful theory of L. Brown
R. Douglas and P. Fillmore (1973) and then we shall indicate '

briefly their approach to the problem.
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usual adjoint operation). All'Sélf—adjoint closed subalgebras
of B(K) are C*-algebras and the Gelfand-Naimark theorem says

that every C*-algebra has a falthful representation as such a
C*-algebra.

If A and I are C*-algebras then an extension of A by I is

a short exact sequence of C*-algebras and *-homomorphisms
0 +I +E +A +0.

{
(If A,B are C*-algebras a *-homomorphism from A to B is an alg-
ebra homomorphism a:X + B which preserves the involution,

a(x*) = (a(x))y* for all x in A. We say a is unital if A and B

have multiplicative identity elements IA and 1B and 0(1A) =1

Our definition of extension is too general for the present
purpose, since we shall only be interested in extensions of

C(X), for X a compact lausdorff space, by K(H), the C*-algebra

of all compact operators on IH. Thinking of extensions as

short exact sequences is a little clumsy, so we shall present

them in an equivalent but more convenient form.

llenceforth X denotes a compact metrizable space.

An extension of C(X) (by K(H)) will mean an injective

unital *-homomorphism T1:C(X) =+ B(H) / K(H) (this quotient alg-
ebra is a C*-algebra with the quotient norm and obvious invol-

ution: it is called the Calkin algebra). We say two extensions

T,, T2 of C(X) are equivalent 1f there exists a unitary oper-
ator U in B(H) U*U = UU* =
m(U*) for all £ in C(X).
B(H) to B(H) / K(H).

(i.e. 1) such that 1,(£f) = n(U)t,(f)

Here m denotes the quotient map from
This defines an equivalence relation

and we denote the class of T by [1],.and the set of these equiv-

alence classes by Ext(X). We'll see shortly that Ext(X) can

be made into a group.

Now let T € B(H) be essentially normal.
normal element of the Calkin algebra,

Then w(T)

7(T) and w(T)* comm-

is a
i.e.
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so by the Spectral'Theorem there exists 2a unique unital

ute,
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injective % _homomorphism T
- n(T), where 2 denotes the inclusion map of
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The first important result of this theory is that all

grivial extensions of C(X) are equivalent. The proof uses

weyl's theorem, and Berg's theorem drops out as a consequence
An addition can be defined on Ext(X) in a

and one can show

The fact that

of this result.
natural way (using direct sums of operators),
easily that Ext(x) is a commutative semigroup-
the class of the trivial extensions forms the zero of Ext(X)

is a non—trivial result - using it and the Wold-von Neumann dec

omposition of isometries (an isometry is an operator U in B(H)

such that y*u = 1) one can show the following:

be the unilateral shift
n(T)*

1973). Let U € B(H)

be an essentially unitary operator (i.e.

THEOREM (B-D-F

and let T € B(H)
is the inverseé of wl(T) in the Calkin algebras
and let n be the Fredholm index of

so in parcicular

T is essentially normal),
T Then there exists K € B(H) compact such that
1. T-K is unitary if n = 0.
2, T-XK = o™ if n is negative.
n

3, T-K = u*? if n is positive.

1t follows that Ext(T) = 2 where T is the unit circle.
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) . :
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’
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] denotes the class of £ in ﬁl(X). Y
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K-THEORY OF c*-~ALGEBRAS

The basic idea of K-theory is that we can analyse a C* -

a in terms of the projections and unitaries that it -

algebr
To avoid tech-

or rather the matrix algebras Mn(A) - contain.
A projection

in A is a self-adjoint idempotent element P p = p? = p*.

ment whose adjoint is its inverse.

nical difficulties we assume that A is unital.

A unitary u in A is an ele
t of infinite matrices with entries

we let Mg (A) denote the se
with the .

in A and with only finitely many entries non-zero.

obvious matrix operations this is an involutive normed alg-
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1.2, ).
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denotes the
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- 0 and s = lel, t = [£1. we def-
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(loosely speaking the set of
(£1).

the unital case.
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all formal differences {e]l -

The definition of KQ(A)
The details

for A non-unital is got from
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(1980) constincted ao non—?calar projections?  B. Blackadar,
sutomorphisn propert certain dimension group having an unusual
automorphism prope tY: and this was reflected in an unusual
then used Ehis AE-:lY Zf the corresponding AF-algebra. He
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5. (Bott Periodicity)
Then K,(A) =
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K,(B).

(Periodic Exact Sequence)
A then there i
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The poundary map &
alized Fredholm indeX.
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5 and 6 are deep and powerful theorems.
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sions and K-theory have been synthes-

KK-theory -
to bhe found in 11,
found in AR and (31,

The theory of exten

a new theory. Readable accounts of K-

jzed into
(21 and (31.

a extensions are

theory an
ies are to be

Extensive bibliograph

REFERENCES

1. EFFROS, E.G.
pimension Group

geries in Mathematics,

1sland (1981).

Regional conference

s and c*-algebras:
Rhode

No. 46, AMS providence,

2. GOODEARL, K.R.
Notes 0D Real and Complex c*-algebras: shiva Math series
S shiva, Cheshire, Enqland (\982).

_ 28 -

3.  VALETTE, A.

\
Extensions
of C*-
algebras: a Survey of the B
rown-Douglas

Fillmore Ihe(;ry 1 Nieuw I\[C)l. voor Hiskunde (3) XXX |982
( )

Univeasily College Conk

DIFFERENTIAL EQUATIONS

NIHE DUBLIN

27t‘l = 29th May g
at the Natlo“al I“Stltute for Hi her

Ed\lcatloll, Dubl.l.ll. Ihere wlll be Speclal sessions on

nonlinear e .
quati
vited speakons end on asymptotics for linear :
ers include K. Brown (Heriot-W cauations:
-Watt), M.S.P

Eastham (King S College LO“dOll H. Ocke“doll O:(ford
' )I ( )
.

J.R. Ockend
on (Oxford) and R.B. Paris (CEA
- Euratom).

Presentatio
ns on
any aspect of differential equati
ions (pure

or applied) are w
el
come. Further information can b
e obtained

from Prof. A
. . Wood
Institute for Hi, School of Mathematical Sciences
gher Education, Dublin, Dubli ( tastoned
’ n 9
of Ireland. , Republic




