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EDITORIAL

As Lthis is Lhe lasl issue of Lhe Bulletin thal we shall Ce
ediling, we would Like to Llake the oppoalunily of making some

commenls on parogness,

We have lLeen pleased to olserve an incrcase in the numlen
of aulhoas contailuling to the Bulletin, The vandiely of ant-
icles has Leen mainlained white thein qualily has, if anyilhing,
Lmpaoved, Thene is!penhaps a sLight oveasupply of maleaial

Laom Conk Lul that {hould change with the move o ucg.
/

Il is notalle thatl unilif now only a tiny handful of aat-
icles has dé;n aefused complelely (quile a Lew wene accepled
only aflea aevision) and the grounds Lon refusal on aequest fLon
aevision have always Leen thal the sulmitled veasion was Loo

lechnical oa would appeal Lo Loo small a minoadily of readens.

It would le oun ambilion foa lhe futunre of the Bullelin
that il would conlinue to see ils paimany Lunclion in pullishing
matleaial which can fLe nead wilh prolii Ly a majoaily of memlens
of the Sociely, We see no poini in Lecoming anothen aescanch
Jouanal in which Lthe average (woaldwide) aeadenship of a given
anlicle {4 exceedingly small, We should sel oun sights high
and Look to Llhe flonlhiy and the Inlelligencear as modeldas!

Since Lhe foamal of the Bulletin was improved so daamatic-
ally in Lthe eanly yeans of iils sojourn in Conrk, changes in its
image ane penhaps not so0 easy to discean, However, thene has
been a significant process of slandaadization taking place in
the genenal layout: Liiles, paging, nefenences, typescaipls
and A0 on, These improvemenis ane Langely the nesull of con-
tinuing effloals on the paat of oun Lypist, Leslie Brookes;, oun

thanks go Lo him fon his contrilutions.

Finally, we welcome Ray Ryan and Ted Hunley as Editon and
Associale Edilon nespeclively, We hope thein expenience with
the Bulletin will Le as pleasant as ouns has fLeen and we wish
them well wilh theia new task.

Mlaalin Stynecas Pat Filzpatrick




IRISH MATHEMATICAL SOCIETY

SECRETARY'S REPORT 1986

1. EUROMATH PROJECT

The appeal to the Irish third level institutions to make
modest contributions towards the preliminary phase of the Euro-
pean Mathematical Council's proposed mathematical database was
very successful. We received contributions of E50 each from
the mathematics departments of the RTC in Cork, DIT (Kevin st),
Maynooth, NIHE (Limerick), Thomond College, TCD, ucc, ucb and
UCG, and another ESO0 from the UCC Statistics department - a
total of ES00. I understand that a proposal for major funding
from the EEC's ESPRIT programme has been prepared and is now

being assessed by the EEC.

2. AMERICAN MATHEMATICAL SOCIETY

We now have a reciprocity agreement with the American
Mathematical Society. The agreement has been announced in
the November issue of the Notices of the American Mathematical
Society. It means that members of the IMS can join the AMS
at a reduced rate of $42 (the full rate is $64 or $84, depen-
ding on your income). Application forms are available from

me .

3 REPORT ON MATHEMATICS IN IRELAND

We are all aware that Mathematics is an essential part
of the infrastructure of Science and Technology. Some of our

members work in areas which are considered applicable" but
those of us who work in "pure'" areas may not be as aware as

we might be how close our subject is to practical applications.
Also, many areas which are considered as being unquestionably
"applied" have now become intertwined with very high-powered

areas which were considered the core areas of pure mathematics.
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There are Lwo US reports which, I think, bring out this
unity and significance of present-day mathematical research.
These are the David report (reproduced in the Notices of the
AMS, August 1984, pages 434-469) and a report produced recently
by a committee under the chairmanship of Philip Griffiths (see
Notices, AMS, June 1986, pages 462-479).

The David report has had an enormous=impact on US Federal
policy towards mathe?atics. .The US government has realised,
as a result of that report, that Mathematics is the cornerstone
of development at tAe frontiers of Science and Technology.

This has been translated into increaséd Federal funding for
Mathematics research (as distinct from Computer Science res-

earch).

It has been suggested to me by a number of members that
if a report were prepared here in Ireland by one of our most
distinguished mathematicians with the aim of elucidating the
present and potential role for Mathematics in Irish education
and industry, it could form the basis for a new appreciation
of the significance of Mathematics. My purpose in writing
this is to start a debate on whether we should embark on such
a project and how best to go about it.

Richand M, Timoney

-3 -




Institute for Advanced Studies.
temporary chairmanship of Prof. S. Tobin,

chair to the Vice-President, S. Dineen.

unable to attend.

An ordinary meeting was held at 12.15 pm

IRISH MATHEMATICAﬁ SOCIETY

Ordinary Meeting, December 19, 1986

at the Dublin
The meeting began under the
who handed over the

The President was

There were 13 members present.

g

The minutes of the meeting of April 4th, 1986, were app-

roved and signed.

The Treasurer presented his financial report and also rep-
orted on a substantial increase in‘membership from 181 to
231 since January 1986 (including reciprocity members: 22
via the IMTA and 14 via the new AMS reciprocity agreement).

There was also one additional institutional member (UCD).

F. Holland suggested that it might possibly benefit the
IMS to be registered as a charity and it was agreed that

this might merit invéstigation.

The Treasurer's report was formally proposed and seconded

and then approved unanimously.

The Secretary presented his report, divided into three

main headings - the appeal for donations towards EUROMATH

(the proposed mathematical database), the new reciprocity
agreement with the AMS and a suggestion that the IMS con-

sider preparing a report which -would identify the optimal

future role for mathematics in Ireland. The latter idea

was discussed at length and received approval in non-

specific terms. F. Holland relayed the information that

EUROMATH had been approved for substantial EEC funding.

The idea was raised of instigating further reciprocity

(for example with the Edinburgh Mathematical

agreements

Society).

Holland's efforts to

ensure that Ireland would be represented at the 1988 Int-

T. Laffey reported on his and F.

ernational Mathematical Olympiad, which is to be held in
Australia. The Government has agreed to this and the
Department of Education will provide.significant funding
for the trip. T. }affey listed a number of the steps which
would be necessar? to select and prepare a team. The

most suitable group of students would probably be those
completing’ their penultimate year in secondary school, as
the timing of the competition would essentially prohibit
Leaving Certificate candidates from taking part. The next
Mathematics contest is to be used to identify a significant
This

tuition would require the assistance of teachers, but it

number of suitable students (say 100 of them).

would also mean the provision of suitable books (which would
have to be bought) and perhaps sets of notes on relevant
topics. IMS members willing to help in this process by
compiling notes or lists of problems are being sought.

It might be necessary to have some '"summer camps" for
groups of these students so that they could receive inten-
sive training and so that a team (maximum of 6 pupils on
the team) could be selected. The team would then need
an intensive training session prior to their trip.

With a view to the future, the question of soliciting funds

to send a team to the 1989 Olympiad was being considered.

Finally, T. Laffey or F. Holland are most anxious to hear

from those willing to assist in the preéparation of a team.

The meeting agreed that the Society would not formally
support the Carmen Bueno campaign, which is the successor
of the now-defunct Orlov-Scharansky and Massera campaigns
(which the Society did support and which achieved their
objectives).




6 It was announced that R. Ryan and T. Hurley of UCG would

edit the Bulletin, following the April 1987 issue.

LETTER TO THE EDITOR

The Secretary also announced a plan that the membership

list will eventually include electronic addresses for those e e et o Bieneh
- P S

members who wish to supply them. In addition, it is prop e e,

Waterford.

February 1987

osed to ask each Mathematics department to set up a depar-
tmental electronic mailbox and organise that it be regularly .

checked (by a secretary, for example). f

f
1

seconded and elected unopposed Dear Editor, ;

7. The following were proposed, |
(for two-year terms in each case): ! In your September 1986 issue Donal Hurley and Martin

Stynes reportéﬁ on the basic mathematical skills of UCC stud-
President : S. Dineen (UCD) ents.
Vice-President s F. Gaines (UCD)
‘ They concluded that students entering third-level colleges

Committee : M. Brennan (WRIC) do not have "the desired basic skills". In the opinion of the

Buttimore (TCD)
B. Goldsmith (DIT, Kevin st)
R. Ryan {UCG)

authors third-level mathematics lecturers should "take an int-
erest in and play an active role in designing the mathematics

curriculum at first and second levels".

Your third-level readers ought to know that:
Richaad M. Timoney )

(Secretary) (1) A syllabus committee under the aegis of the Department of
Education and composed of three inspectors, three teacher
union representatives and three school manager represent-
atives put the finishing touches about a year ago to three
nev Intermediate Certificate syllabi. The Intermediate
Certificate stable door is swinging open and the horse has
gone.

(2) However, a Leaving Certificate Syllabus Committee (for
Mathematics) also under the Department's aegis but this
time including a representative of the universities (s
third-level colleges) had its work on three new Leaving
Certificate syllabi suspended, also about a year ago.

The Leaving Certificate horse is still in the stable.

It is important for the authors of the UCC survey to distin-
guish between their viewpoint and the grounds for the long-




standing objection that universities (sic) have been over-
That objection

influencing second-level mathematics syllabi.
is concerned with topics such as linear programming, vector
analysis, calculus, even parts of trigonometry on the L?wer
Leaving Course; it is concerned with linear transformations,
convergence of sequences and series, probability, groups, .-

on the Higher Course.

The authors of the article about UCC students want the
third-level sector to influence second-level syllabi. I
think I know in what way, but perhaps ;hey would spell it out?
And I would like to know what recommendations they or other
third-level people would make for primary level. Finally,
given the composition of syllabus committees heretofore, how

el
are all third-level interests to be represented from now on:

Michael Brennan

SECOND INTERNATIONAL CONFERENCE
ON

HYPERBOLIC PROBLEMS

THEORY, NUMERICAL METHODS AND APPLICATIONS

March 13 to 18, 1988

Place: RWTH Aachen, Federal Republic of Germany

address all your correspondence to: Rolf Jeltsch,

Institut fuer Geometrie und Praktische Mathematik,
RWTH Aachen, pD-5100 Aachen, Federal Republic of Germany.
Phone: (0241) 80 39 50. Arpanet: NA.Jeltsch at SU-Score.
L__v EARN/Bitnet: Jeltsch at DACTH51.
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AN ESSAY ON PERFECTION

Micheal 0 Seanchid

1. ABSTRACT

A recent result of Murphy (2] concerns operators on a
given infinite dimen§ﬁonal Hilbert space Il. It states that,
given a non-empty coﬁpact subset K of the complex plane, there
exists a non-diagonglizable normal operator on H whose spectrum
is K, if andfznly if K is uncountable. To effect this result,
the operator theorist must use a well known result in topology,
namely, that every uncountable separable metric space contains
a perfect set. This excursion into topology led us to inves-
tigate how far the conditions of separability (in the metric
space case this is equivalent to second countability) and met-
rizability can be stretched. We give below some general res-
ults about topological spaces which must contain perfect sets,
and we produce a series of counterexamples to show that the

conditions we have imposed on the spaces are indeed quite sharp.

2. INTRODUCTION

We recall firs?ly that a subset of a topological space X
is said to be perfect in X if it is non-empty and is equal to
the set of its limit points in X.

We now generalize the notion of compactness in the foll-
owing definition: let 2 be a transfinite cardinal number and
let X be a topological space. X is said to be f-compact if
every open cover for X has a subcover of cardinality less than
Q. It is clear that X is compact if and only if X is ¥Wo-

compact, and that X is Lindelof if and only if X is Xl—compact.

In what follows, we shall be concerned also with a gener-

alization of the concept of a 66. We shall consider a Ltopol-

oglcal space which has the properlty that cach singleton subsct

=9 =




of it can be expressed as the intersection of open sets whose
number is less than Q, where @ is a given transfinite cardinal
We note that any space which satisfies such a prop-
Also, when 0 = X, the prop-

number.
erty is necessarily a T, space.
erty is equivalent to that of each singleton set being a Gg.

We note also that every singleton set in a first countable T,
space is necessarily a Gg; and further that a compact Hausdorff
space has the property that each of lts singleton subsets is a

Gg if and only if it is first countable.

For all other topological definitigns, we follow Kelley

(1.

3. TOPOLOGICAL RESULTS
We begin with an elementary lemma, which mimics the compact

case:

Let Q be a transfinite cardinal number and let X

Let Y be a closed subspace

3.1 LEMMA.

be an Q-compact topological space.

of X. Then Y is also Q-compact.
PROOF . Suppose (Ua)aeA is an open cover for Y, where A is

Then, for each a € A, Ua = Va N Y for some
set V, open in X. Then X \ Y U (V“)aeA is an open cover for
X, so there exists a subset B of A with card(B) < @ such that
Then (Uqh€ p covers Y.

some indexing set.

x\yUu (Vu)ueB covers X.
We are now ready to prove our main theorem:

3.2 THEOREM. Let T and Q be transfinite cardinal numbers

with T s Q.
T-compact and in which every singleton subset can be expressed

Let X be a regular topological space which 1s

as the intersection of 20 open sets. Suppose card(X) z Qi

then there exists an T-compact subset of X which is perfect

in X.

PROOF. Let T = {x € X: VN € Nbd(x), card(N})z Q).

show that T is perfect in three stages.,

We shall

(a} Firstly we show that if Y is any closed subspace of X with
7

card{(Y) z Q, then Y N T £ p. Indeed, suppose, on the contrary,

that ¥ N T = §; then, for each y ¢ ¥, -there exists an open

Now Y
is T-compact by 3.1, so there is a subset V of Y of cardinality
less than T such that/

i

|
7
¢

neighbourhood Ny of y with cardinality less than Q.

\ YCUN,.
yev ¥
This leads to the contradictory conclusion that card{Y) < 0

Hence we have T N Y # ¢; in particular, T is not empty.

(b) Secondly, T is closed in X, for, if x is any element of
X and if N is a neighbourhood of x which has non-empty inter-
section with T, then N is a neighbourhood of some point of T
and hence has cardinality not less than 0. So T is closed
in X, and T is T-compact by 3.1.

{c) Thirdly we show that every point of T is a limit point
of T. Let t € T, and suppose that K is a closed neighbourhood
of t; then

card{(K \ {t}) z Q.

L .
et (Ni)iE I be a family of open sets of X with card(I) < Q
which satisfies

(t) = N N,.
iel 4
Then

K\ (6) = U (K\w)

ierx
He
nce wg have card(K \ Ni) 2 N for some i€ I.

Part (a) of the proof now allows us to deduce that

TN (K\ (t)) # ¢.




Since X is a regular space, this is sufficient to conclude that

t is a limit point of T.

Hence T is perfect in X.

Some notes regarding the separation property of our top-

ological space are in order. Firstly, a T, space is regular

£ and only if it is compact Hausdorff. Secondly,
These con-

and compact i
a regular Lindelof space is necessarily normal.

siderations account for the formulation of the following two

special cases of our theorem:

Let X be a first countable compact Haus-

3.3 COROLLARY (i).

dorff space. If X is uncountable, then X contains a perfect
set. .
(ii) Let X be a normal Lindelof space 1n

i i ble, then
which every singleton set 1s a Gé. If X is uncounta '

X contains a perfect set.

PROOF. This is precisely what theorem 3.2 says when

Ro and Q =Rl.
= N,

(i) T

n

(ii) T

Tt is well known that a compact llausdorff space is met-

rizable if and only if it is second countable. It is well

ind the reader at this point that there do exist first
econd count-

to rem
table compact lausdorff spaces which are not s
n the order

coun '
able. For an example, consider {o,1) x (0,1) i

topology induced by dictionary order: (a,b) ¢ (c,d) means that

either a < ¢ or both a = ¢ and b ¢ d.

Actually, since evefy second countable space is heredit-

arily Lindelof, the general theorem for these spaces is much

more easily stated:

3.4 THEOREM. Let X be an uncountable second countable top-

ological space. Then X contains a perfect set.

PROOF ., Let T = (x € X: VN e Nbd(x), N is uncountable).
Since every subspace of X is Lindelof, an argument similar to
that of 3.2(a) shows that T has non-empty intersection with
every uncountable subset of X. So X \' T is countable, and
it follows immediately that every point of T is a limit point
of T. That T is clésed is proved as in 3.2(b).

perfect and the result is proven.
{

Hence T is

We should like to investigate now the necessity or other-
wise of the toplogical conditions which we placed on the space
X in theorem 3.2 in order to ensure a successful outcome.

The following three examples are instructive:

3.5 EXAMPLE. Let X be any set with the.discrete topology.
Then X is Hausdorff since all subsets are clopen; X is first
countable since each singleton subset is open; and X is locally
compact since each singleton set is clopen and compact. Yet,
whatever 1ts cardinality, X contains no perfect set because

all its points are isolated.

3.6 EXAMPLE. Let Y be an infinite set and let yeVY. We
define a toplogy on Y by declaring as open each set whose com-
plement is finite or whose complement contains y. Then Y is
Hausdorff since there is only one singleton set in Y which is
not clopen; Y is compact since each open cover for Y contains
a neighbourhood of y, which necessarily has finite complement;
yet, however large the set Y is, Y contains no perfect set,
since only one of i&s points is not isolated.

3.7 EXAMPLE. Let Z be any non-empty set and let z ¢ 2.

We define a topology on Z by declaring as open each subset of
Z which does not contain z, and Z itself. Then Z 1s compact
since every open cover for Z contains the only neighbourhood
of z, namely Z; Z is first countable since z has exactly one

neilghbourhood and every singleton set other than (z) is open.

- 13 -




Yet Z, regardless of

space for the same reason.

z is a T,

its cardinality, contains no perfect set since only one of its

points is not isolated.

This last example is not as satisfying as the other two.

Although 2 is Tg, it is not T,, and although it is first coun-
table, not every singleton set can pe expressed

Ideally we should have liked to find

as the inter-

section of open sets.

compact first countable T, space which contains

an uncountable

no perfect set.

Example 3.5 shows us that the essential role played by

T-compactness in the proof of 3.2 cannot he assumed by any loca!

property. It is true, however, that a local property is suff-

jcient to provide us with a converse of the most special case

of our theorem:

3.8 Let X be a locally compact Hausdorff space.

If X contains a perfect set P,

THEOREM.
then every set 1In the relative

topology of P» other than @, 1s uncountable.

and let U be an open

PROOF . Suppose P is a perfect set in X,
set in X which has non-empty intersection with P. Then U NI P
is closed in X so is locally compact. Now, U N P is a T, spac

U nP.

each of these sets is also

so each of the sets (U nPp)\ (t) (teUNP) is open in

since P is perfect,
TN P is a locally compact regular space
\ (t) is dense
Tt follows that

Furthermore,
dense in UnP. Now ,
so EEEE‘Baire's theorem holds; hence tQ I(U n P)
in U n P for any countable subset I of UN P.

uNPis uncountable.

We are now in a position to state a necessary and suff-

jcient condition for a certain type of topological space to

contain a perfect set. Moreover, we can jdentify that part

of the space in which perfect sets must lie:

- 14 -

3.9

space.

THEOREM. Let X be a first countable compact Hausdorff

Then X contalns a perfect set if and only if X is un-

countable. In that case, every perfect set in X is contained

in T, where T = (x € X: every neighbourhood of x is uncountable)
PROOF . By 3.2 and 3.8.

Of course it is not true that all perfect sets are uncoun-

table. The most primitive counterexample to that conjecture

3 2 {
is an indiscrete space of tw i
P ; two elements. This is compact,

first countable and berfect in itself. A more formidable

counterexample would be any countably infinite set with the
finite complement topology. This has all the above properties

and is a T, space besides.

We have proved a converse to 3.3(i). Any attempt to

produce a converse in general to the main theorem is, however
v

A In fact, the converse to our second spec—'
jal case is easily seen to be false.

doomed to failure.

The set of rational
numbers with the usu;l metric gives us a normal first countable
T, space, as all metric spaces do, which is Lindelof since it
is countable. This set is clearly perfect in itself, yet is

not uncountable.

This last counterexample brings to prominence that per-
petual defect of the rational numbers - that they are incom-
plete.
text.

Complete metric spaces behave well in the present con-
Indeed, theorem 3.8 has a companion theorem, proved
in exactly the same way:

3.10 THEOREM. Let X be a complete metric space. If P is
a perfect set in X, then every set in the relative topology

of P, except for §, is uncountable.

It should be added that complete metric spaces do not nec-
essarily contain perfect sets even when they have large enough
cardinality. Indeed, any set can be endowed with the discrete

n . .
etric to produce a complete metric space;j as we have already

- 15 -




noted, no discrete space contains a perfect set.

In mektric spaces, we can 1ook for perfect sets which are

small in the sense, of the metric. Our main theorem yields

us a result:

3.11 THEOREM. Let Q be a transfinite cardinal number. Let

X be an Q-compact metric space an
then there exists an Q-compact

d suppose card(X) z Q. Let

€ be a positive real number:i
subset of X which 1is perfect in X and whose diameter is not

greater than €.

The open balls {(x & X: dist(x,a) ¢« e} {a € X) cover

PROOF.
rdinality less than €

X; therefore some subset of them of ca

also covers X. Since card{x) z @, it follows that at least

one of the balls, say B, has cardinaﬁit
being a metric space, B is also T

y not less than Q.

Now B is Q-compact by 3.1;

and first countable. Theorem 3.2 now furnishes us with an

Q-compact perfect set in B, which is also of course {1-compact

and perfect in X. Its diameter does not exceed E.

This leads us to a very special case indeed, where we can

say a little more:

3.12 THEOREM. Let X be a subspace of R® where n is a natural

Let € be a positive real number.

number. We have:

(a) If X is uncountable, then X contains a perfect set of dianm

eter not more than €3 further, if X is closed, then this per-

. . n .
fect set is both perfect 1in R and compact in R™.

(b) If X contains a perfect set, then the closure X of X in

n
R" is uncountable.

(a) Since every, subspace of R" is Lindelof, the

PROOF.
The resulting perfect set P in

first part is given by 3.11.
solated point in R" and, if X is closed,

X certainly has no i
Since P is bounded

it is closed in 1R™, hence perfect in r".

it is also compact by the Heine-Borel theorem.

- 16 -

(b) If P is perfect in X, then it is clear that P is perfect

in X. X
in Since X 1s locally compact, the result follows from 3.8
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EXTENSIONS AND K-THEORY OF C*-ALGEBRAS

G.J]. Muaphy

INTRODUCTION

The theory of C*- algebras is increasingly having an impact
on other areas of Mathematics, and on Mathematical Physics,
for example, on Algebraic Topology, Differential Geometry,
Topological Group Theory and Quantum Mechanics. Qur aim here
is to give an account, comprehensible ito the non-specialist,

of some of the most important recent results in this subject.

THE BROWN—DOUGLAS—FILLMORE THEORY

Let U be a Hilbert space (all vector spaces and algebras

are over the complex number field C)-. An operator T on I is

normal if T*T = TT* and such an operator is diagonalizable if
H admits an orthonormal basis consisting of eigenvectors of T.
Of course relative to such a basis T has diagonal matrix, and
on finite dimensional Hilbert spaces all normal operators are

diagonalxzable, but this is false in infinite dimensions: if

(en)n cz is an orthonormal basis for Il and if T in B(H) (the
algebra of all bounded linear operators on H) is defined by

Te = € .4 (n e 2) then T is normal and a trivial calculation

shows that T has no eigenvectors.

lHowever despite this negative result, in a certain sense
To be precise,

H. Weyl (1909) showed that if’ ‘H is a Hermitian operator (T = T*

normal operators are "nearly diagonalizable".

on a separable infinite-dimensional Hilbert space H then T is

a sum of a diagonalizable operator and a compact operator (an

operator K on H is compact if there is a sequence of operators
K with finite dimensional ranges such that ||Kn—Kl| converges
to 0 as n tends to =, where |].]1] denotes the operator norm

on B(H). From the point of view of Operator Theory compact

operators are "small", and adding on a compact operator to a
P

given operator only "perturhs' the operator "inessentially").
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By the way, the Weyl result fails if separability is dropped.
surprisingly, the extension of this result to all normal oper-
ators did not come until 1970 when I.D. Berg showed that every
normal operator on a separable infinite dimensional Hilbert

space is the sum of a diagonalizable and a compact operator

Now let us consider the set J+X of all sums D+K where D
is a diagonalizable and K a compact operator on H (henceforth
nowill al f infini i

ways denote afseparable infinite-dimensional Hilbert
space). Given an opefator T on II one could ask for a

tral condition" on T that T belong to D+X.

"spec-
. ’ This is not very
precise, but if T € D+X then its self-commutator T*T-TT* is
compact, i.e. T is essentially normal, One could now ask
(naively) do all essentially normal operators belong to D+/A?
The answer is no, and the explanation is elementary but reveal-

ing.

An operator S on H is Fredholm if it has closed range and
the spaces N(S) and N(S*) are finite dimensional (N( ) denotes

the null-space or kernel). We then define the Fredholm index

of S to be
index(S) = dimension N(S) - dimension N(S*)
One has index(S) = index(S+K) for all compact operators K, and
. I3 '
if S is normal, index(S) = 0. Now let (e ) be an ortho-

n‘neN
normal basis for H and let U be the operator on H defined by

Uen = e (n € N). U is called the unilateral shift and will

be referred to again later. , U is essentially normal and of
Thus U-.cannot be of the form diagonal +

compact, since any such operator is of index 0

Fredholm index -1.

It turned out that this index 6bstruction was the only
obstruction, but the proof of this required the introduction
of homological algebra teéhniques into Operator Theory. First
we shall state the results of the beautiful theory of L. Brown
R. Douglas and P. Fillmore (1973) and then we shall indicate '

briefly their approach to the problem.




. S)
jts essential spectrun is the set 0yl

- pem) .
If S € that -1}, is

nolt a Fredholm operator.)
rs A such

comp
- 1973)
IEOREH (p-D=F

is a
sséncially normal operator on H then T
n e

(£ T ois 2

' onalizable operator

and a compact operator if and

diag
s o dex (T=M y = 0 for all AeC \ oe(T). |
N o }l ther
on e
T re essenrially normal opcrators ofn H then (
a ) . 0 . .
2 e rator K on H such that T,-K is unitarily equlvV
e : t if an
iz % con” (in this case we say T and T, are compalen (
‘ 1 i # (% [
sdent® o J T, have the same essential spectrum X and [or
Jf Ty an 2
onty 1° ! . have index(T =A1;)).
\ € c \ X we
all = .

is theorem completely classifies the essentially
this

i lass of operator
large and important ¢
e Alth-

Thus
rators

normal ope quivalence modulo the compact operators.

jtary €
to unl
uP results are stat ‘
e.
i algebras of operators, 1.
s i . Many Operator Theor-

latter,

ed in simple Operator Theoretic terms
the

ough
£
e proo
e oned above,

C*-algebras, an

homological algebra.
ofs that did not involve the
for only this year

menti
s uld prefer pro

¢ at last this may be possible,
" Davidson have announced a

and
iStS WO
seems t

(1986)
-p-F

new proof ol
1.p. Berg and K.

. ; d

theorem that apparently uses quite different metho
e

the B

”Oweverr

TheorY:

e methods, sof

1ogical methods are here to stay in Operator Alg
homo

e there nowvw exist many more

ne of which we'll be looking at later.

deep results usil
sinc
ebra

thes

E THEORY oF EXTENSIONS
Tl

A C*-al
x n x* such

pra is a Banach algebra A with an isometric in-
e

’ that ||x*x]] = |I1x||? for all x in A. 1
then C(X), the set of all comp

is a C*-algebra with the ok

tion
v pact Hausdorff space

ig a com '
- ntinuous functions on X, i
-defined operations and the supremum norm.
B Jbert space: then B(K) is a C*-algebra (the norm is
Hi
is any

tor norm and the involution 1is defined by the
erato !

yalued €°
ntwise

the oP

of all

o

usual adjoint operation). All'Sélf—adjoint closed subalgebras
of B(K) are C*-algebras and the Gelfand-Naimark theorem says

that every C*-algebra has a falthful representation as such a
C*-algebra.

If A and I are C*-algebras then an extension of A by I is

a short exact sequence of C*-algebras and *-homomorphisms
0 +I +E +A +0.

{
(If A,B are C*-algebras a *-homomorphism from A to B is an alg-
ebra homomorphism a:X + B which preserves the involution,

a(x*) = (a(x))y* for all x in A. We say a is unital if A and B

have multiplicative identity elements IA and 1B and 0(1A) =1

Our definition of extension is too general for the present
purpose, since we shall only be interested in extensions of

C(X), for X a compact lausdorff space, by K(H), the C*-algebra

of all compact operators on IH. Thinking of extensions as

short exact sequences is a little clumsy, so we shall present

them in an equivalent but more convenient form.

llenceforth X denotes a compact metrizable space.

An extension of C(X) (by K(H)) will mean an injective

unital *-homomorphism T1:C(X) =+ B(H) / K(H) (this quotient alg-
ebra is a C*-algebra with the quotient norm and obvious invol-

ution: it is called the Calkin algebra). We say two extensions

T,, T2 of C(X) are equivalent 1f there exists a unitary oper-
ator U in B(H) U*U = UU* =
m(U*) for all £ in C(X).
B(H) to B(H) / K(H).

(i.e. 1) such that 1,(£f) = n(U)t,(f)

Here m denotes the quotient map from
This defines an equivalence relation

and we denote the class of T by [1],.and the set of these equiv-

alence classes by Ext(X). We'll see shortly that Ext(X) can

be made into a group.

Now let T € B(H) be essentially normal.
normal element of the Calkin algebra,

Then w(T)

7(T) and w(T)* comm-

is a
i.e.
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so by the Spectral'Theorem there exists 2a unique unital

ute,
from C(oe(T)) to the calkin algebra

injective % _homomorphism T
- n(T), where 2 denotes the inclusion map of

such that TT(Z)
the extension of Oe(T) determined by

Wwe call Ty

oe(T) in C.
y normal operators on H both have esS-

T. 1f two essentiall
ential spectrum ¥ then they are compalent iff the extensions

they determine are equivalent.

eral compact metrizable space, extensions of
where the ext-

Given a gen
in fact trivial extensions exist,
id to be trivial if there is a unital * -homomor -
The trivial ext-

Cc(X) exist.
ension T is sa
to B(H) such that T = mp.

_phism P from C(X)
(By the way if metrizabllity

ensions form the zero of Ext(X).
of X is dropped then trivial extensions may not exist.)

The first important result of this theory is that all

grivial extensions of C(X) are equivalent. The proof uses

weyl's theorem, and Berg's theorem drops out as a consequence
An addition can be defined on Ext(X) in a

and one can show

The fact that

of this result.
natural way (using direct sums of operators),
easily that Ext(x) is a commutative semigroup-
the class of the trivial extensions forms the zero of Ext(X)

is a non—trivial result - using it and the Wold-von Neumann dec

omposition of isometries (an isometry is an operator U in B(H)

such that y*u = 1) one can show the following:

be the unilateral shift
n(T)*

1973). Let U € B(H)

be an essentially unitary operator (i.e.

THEOREM (B-D-F

and let T € B(H)
is the inverseé of wl(T) in the Calkin algebras
and let n be the Fredholm index of

so in parcicular

T is essentially normal),
T Then there exists K € B(H) compact such that
1. T-K is unitary if n = 0.
2, T-XK = o™ if n is negative.
n

3, T-K = u*? if n is positive.

1t follows that Ext(T) = 2 where T is the unit circle.
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e e

As - i
s mentioned earlier Ext(X) is a group The origi 1
s gina

B?D-F proof of this was very complicated but W
simplified the proof. .

Arveson has

Our i i
) next task is to "identify' the group Ext(X), at 1
or X a compact subset of C (the case r : -

ators). elevant to single oper-

1 /

Let = 3 i '

(X) denote the first cohomotopy group of X (thi
s

C P -
.
an be lde”tlfled as the quotle“t g):oup Of the grou Of inver

tible !
elements of C(X) modulo the connected component of 1

(which is a i
a ‘subgroup) . Equivalently n1(X) is the group of
. s of continuous functions from X to c \ (Oi)
Z) de ;
i notes the group of all homomorphisms from n1(X)

and we define a ma
p Yy from Ext(X :
equation X (X) to this group by the

homotopy classe
Hom (' (X
to 2,

YXlT][fl = index(T(f))

) . :
where [[] € EXt(X), f is an invertible element of C(X) and
’

[f] d
] denotes the class of £ in ﬁl(X). Y

= Yy is easily seen

P " t ] P S 1s ge“eral
to be a hOllOllOI hism bu it 1 not an 1somor hism .

esult of the B-D-
isomorphism if X is S
a compact subset of the plane

However it is a deep r

that ho i S
mological algebra comes in, and surprisingly h -
perhaps,

one has to be able to talk about Ext(x) for X not a SUbset Of

the plane to construct the proof

We are now Ieady to SketCh a PIOOf of the B D-F theol’.e“.

let Il ’ 12 be esse“tlalli llOIllal Operators on H "lth eSSthlal

spectrum X and su .
ppose that index = -
e c\ X. ex(T;-A1) = index(T,-A1) for all

hes bywi h::: :o show that the extensions Ti and T2
e s ;t ’ fff respectively are equivalent extensions,
“1(x) 2 uffices to show that YX[T‘] = YX[Tzl. But
e generated by the elements [z-A,] where z is the incl
e hoa: zz i in C and )y is an arbitrary point of the hole

s a bounded connected

' - component of C \
it suff o
ices to show that Yx[Tx][z—Xw] v

= YX(Tzl[z')‘w]/ i.e.
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i.e. index{T =Ay)
e ¢\ X.

index(Tz(z—xm)),

index(r,(z—km) =
index(T;okw), But this is true since Ay

ent on to show that oné can

Brown, Douglas and Fillmore W

use Ext to define a generalized perio
Their theory
perators and the Atiyah-Singer
instead we

dic homology theory on

metric spaces. thus links up with the

of pseudodifferential o

compact
theory
" index theorem.
look at a theory which i

which has already had many important applications,
"natural" than the theory of exten-

Wwe are not going to pursue this;
s in a sense dual to that of extensions

and which

is in some respects more

sions.

K-THEORY OF c*-~ALGEBRAS

The basic idea of K-theory is that we can analyse a C* -

a in terms of the projections and unitaries that it -

algebr
To avoid tech-

or rather the matrix algebras Mn(A) - contain.
A projection

in A is a self-adjoint idempotent element P p = p? = p*.

ment whose adjoint is its inverse.

nical difficulties we assume that A is unital.

A unitary u in A is an ele
t of infinite matrices with entries

we let Mg (A) denote the se
with the .

in A and with only finitely many entries non-zero.

obvious matrix operations this is an involutive normed alg-

Mn(A) has a unigque norm making it a C¥* -

ebra {each subalgebra
1.2, ).

algebra, and M {A) is the union of all Mn(A) {n =

jections e,f in A are equivalent if there is

We say Pro
H(A)

ath of projections in Mm(A) from e to f.
{el for this equival-

a continuous P
set of equivalence classes

1f s,t € H{M) then there exist projections

denotes the

ence relation.

- 0 and s = lel, t = [£1. we def-
ine (without ambiguity) s+t = [e+f]. This makes H{a) an abe!

ian semigroup with zero element, and we let Kg(A) denote its
(loosely speaking the set of
(£1).

the unital case.

e,f in mm(A) such that ef

Grothendieck enveloping group

all formal differences {e]l -

The definition of KQ(A)
The details

for A non-unital is got from
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arec une 1(.] t ni“g and stral 1L ()IW‘EI‘)(I 50 nitted
nenl hte L (” L ' O .
mi -

Now fOr the definition of Kl - this Si“pler than Ko

we do not have to assume that A is unital

and

the involuti We let ~
ive normed algebra got by adjoining ide(A) be
an identity

element to M_(A
o(A). U(A) denotes the group of unitari
aries of

A and Ux the connected component of 1 in U This is
a norma subg P K . .
mal bgrou of U and we let I(A) de
/ N . ] note the quotient
fj

One sho j
ne uld think /of Ky(A) as an "index" grou
© g -
"re ype indices have their values in ) -
ifically one should think of T
projection e.

' Spec-
dimension" of the

In some wa
ys K-theo i :
Fredholm index theory. ry is like a generalized

{e) as the

Here
are a few random examples of K-group
-H

1. Kg(C) = 2, K,(C) =0
2. Ko (B{H)) = 0, K, (B(H)) = 0
3.

If O_ is
n the C*-subalgebra of B(H) generated b
y n

(n » 1) isometries S

vr ee+s S_ such ti

then O is sim i " e L

o n ple (i.e. it has no proper cl nsn -
eals) and Ko(On) = 2/(n-1) S

torsion. Thus the K-groups can have

Before listin
g the basic
at properties of K-t
some of the applications of the theor neory e took
Y.

An AF—algebra .
is a C*-algebra h .
uence i . aving an incr i
of finite-dimensional C*-subalgeb sesing sedr
such that the union U(A . ras A, < A, C
n

e ' oo
e /2, ... } is dense i

e c,, K(H), and the CAR-algebr i .
mathematical physicists ' N

Some

Thi
and extensive - for exampl ths class of algebras is diverse
pie ere are unc
ountably many n
on-

isomorphic si
simple AF-algebras. The AF-algebra h
s exhibit typ-

ical C*-al
gebra behaviour and are highly non-trivial
-trivial in gen-
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ally not even type I.

eral - they are usdu

n AF-algebra and I is a closed two-sided ideal

I1f A is a
It is natural to endg-

nd A/1 are AF-algebras.
j.e. if A is a
at both I and A/1 are

answered this aff-

in A then I a

e converse is true, C*¥-algebra and I

uire if th
4 two-sided ideal in A such th

a close
hras is A an AF-algebra? L. Brown

AF-alge
tively in one of the first ap
w that one

plications of K-theory.

can lift projections
~to show that every

r the

irma

The essential idea was to sho

from the gquotient algebra A/I to A, il.e.

projection in A/I is the image of a profection in A unde
The proof used the 6-term

ted

quotient map T from A to A/I.
{this seguence will be exhibi

exact sequence of K-theory
below) .
ic terms

inally conceived in K-theoret
algebras

Although not orig
hat the classification of AF-

(1978) involved K (K, (A)
trict our-

it was soon realized t
4 G. Elliott
For simplicity we'll res
a translation-

due to O. Bratteli an =0

for any AF-algebra A).

AF-algebras. One can define

(for A any unital AF-alg-
to be the set of

selves to unital

invariant partial
ebra) by defining
all (el for e a projection in M_(A).
partially ordered group. Now the C*-algebr
said to be stably isomorphic if the c*-tensor product of K(H)

and A is *.isomorphic to the C*-tensor product of X{(H) and B -
loosely sp d B have the same repres-

entation theory.
One of the elegant resu
B whose Ko

are stably jisomorphic.

ordering on Ko (A)

the positive cone KO(M+
Thus K¢ (A) becomes a

as A and B are

eaking this means that A an

Stably isomorphic C*-a
1ts of Brattel
-groups are isomorphic

Moreover

lgebras have the same
i and Elliott

K-groups.
is that unitél AF-algebras A,

as partially ordered groups.

if there exists a partially ode
KO(A) to K, (B) such that ¢{1A]

red group isomorphism ¢ from

(181 then A and B are ac

*.-isomorphic!

One can useé K, (M) to investigate the structur
algebra A. For example, there is a bijective correspondence
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tually

e of the AF-

betwee -5 =
elwW n the lattice of closed two-sided ideals of A an
nd the

lattice of ideals (CC‘[Lal“ SUbE}KOUPS) of Ko(“)- Also
¢

can give an ab
stract characterization of the partiall
y ordered

one

groups that can
e imannShon ?§§:?r as K,(A) for some AF-algebra A (Effros-
groups. Let us ment; ?hese groups are called dimension
Quantum Mechanics: o on in .passing an application of this to
dynamical syst : ‘ne can use this theory to construct C*
ystems with ? given set of temperatures for KMS-

states. Howe ,
ver one ?f the most striking applicati
ions of the

theory was its u in f i
se in 'solving a long-standing open probl
oblem posed . .

by I. Kaplansky'i
other than C. zitg 1958, namely is there a simple C*-algebra
(1980) constincted ao non—?calar projections?  B. Blackadar,
sutomorphisn propert certain dimension group having an unusual
automorphism prope tY: and this was reflected in an unusual
then used Ehis AE-:lY Zf the corresponding AF-algebra. He
o non-trivial proj82:'ra to construct a simple C*-algebra with
2 conjecture of R Kad.10ns. Nevertheless this still left open
(s stock countere;am l1s<.>n that a certain C*-algebra C* (F,; )
projections.  This Su:sz:o:a:y situations) had no “On-ijfvigl
Pimsner and . as resolved affirmativel
Lternative E;O:;l:u:jscu ?sing K~th¢ory‘ A Connes QZVZYa:.
commutative Differe:t'n using K-theory, but also using his "non-
in C*oalgenra theory)xal Geometry" (another new exciting area
fully applied in ol . By Fhe way K-theory has been suc -
classical Differential Geometry, to the ;zss
V-

Now it is time t i
o list s .
K-theory: cme of the basic properties of

1. If o A - .
B is a *-homom .
orphism of C*
are corres i -algebra
for 3 0 ponding group homomorphisms K, (a) K. { P hen here
= 0,1. This defi - c(R) * K. (B)
nes a pair of ; J J

the categor P of covariant funct

gory of all C*-algebras to the cat ors from
groups. ategory of all abelian

2. {Continui ’
ity) If A 1is a s

n inductive limit i

in the Categor

Y

of —algeb a = =
C ras A = im Y = im K A j=0
? 1i A AA say, then K. (A) 1i
J A ]( A)' ' 11.
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a continuous

ance) 1f ¢t (o s &t s 1) is
from the C*-algebra A to the c*-algebra
hen Kj(¢o) =

3. (Homotopy Tnvari
»homomorphisms

path of *
of pointwise

B (in the topology
= 0,1.

convergence) t

K. ) 3
)(01 ]
4. Stably isomorphic cx-algebras have isomorphic K-groups-
Let B be the cx-tensor product of

- K,(B) and Ko (A)

5. (Bott Periodicity)
Then K,(A) =

the c*-algebra A and C,o(R).

K,(B).

(Periodic Exact Sequence)
A then there i

6. 1f I is a closed two—sided
ideal in the c*-algebra s an exact sequence

Ko (1) Ko (A) Ko (A/T) K, (1)~ K, (A) = K, (AT) Ko (1)

, from K,(A/I) Eo K, (1) can pe thought of

The poundary map &
alized Fredholm indeX.

as a sort of gener

5 and 6 are deep and powerful theorems.

A FEW CONCLUDING REMARKS

sions and K-theory have been synthes-

KK-theory -
to bhe found in 11,
found in AR and (31,

The theory of exten

a new theory. Readable accounts of K-

jzed into
(21 and (31.

a extensions are

theory an
ies are to be
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BANACH SPACE ULTRAPRODUCTS \

A trivial
applic
E{lbax om T can b ation of Zorn's lemma
| e extended to an ult shows that every
rafilter o
n I.

g, Coleman ,
The followi
ing topologi
the pological
INTRODUCTION basis of the definiti property of ultrafil
ion of the Banach ters forms
_ This note presents a useful tool in panach space theory: THEOREM 1.1 space ultraproduct.
ultraproducts of Banach spaces: These provide 2 uniform let I be a ; Let K be a compact Hausd
on-
method for manufacturinq locally similar Banach spaces: In Foe wonh B ‘: empty set and U be an Iorf[ topological space;
mi ult . H
this way they relate 1ocal (finite dimensional) and global % Y (Xi)! in K rafilter on I.
. € K such that, fo ',J'G I , there exists a Then,
! r{ every nei unique .
/ eighbourhood point
/ V of x,

(1nfinite dimensional) structure.

[}
. . ; . . . / (ie I :

Prerequisxtes are 1n gection 1 gection 2 contains defin- . Xi € V) eu

jtionse. Section 3 sketches some typ%cal applications in the ::z s:igt x is called the limit
local theory of Banach spaces. The conclusion mentions other enoted by lim x,. of (xi)ie T with respe
areas in which ultraproducts are profitably employed. Results u et to U,
for which no reference js given can pe found in (4] and (1]
which include pibliographies:- 2.  ULTRAPRODUCTS OF BANACIH
SPACES

L
et (g, |1 11

over C ) i € I) be .
(or R) indexed by the set a family of Banach spa
et I. ces

1. FILTERS AND ULTRAFILTERS U i
is an ultrafilter on I

To set up and handle ultraproducts of panach spaces eff- Define I, and N.. a
ectively. one requires some pbasic facts about filters and ultra- u s follows:
filters on sets. Mo = ((x,). )
i'lier * %1 € Ei’ sup Hx. 1] <
Let I be 2 non-empty set and pP(I) be the power set of I. e X * =
A filter on 1 is a subset F of PLI) such that: NU = ((xi)i e1 ® (x.)
i'ie Ielb,lim I'x'll - 0)
F1 ge F. tote et u i .
F2 Ae F, BEF imply M nBe F. unique by theo;emof (xi)ie 1 € Mo, lim x| '
;3 MAeF, ACGB — 1 imply B € F- i U ill exists and is
Let
AN ultrafilter on I is a maximal (proper) filter on I. BEquiv 3 Il be the supremum norm on Ig:
alently, U is an ultrafilter on I iff (1) v is 2 filter on I
and (2) for a1l x € P(I). x e F Aff I-X | F. ll(xi)ié IIl t= sup |[x,|]
Then L_((E,), i 1 ier ithe
is easy tolc;;Zi t;s the Banach space (M,, |]
- 30 - at Ny is a closed SUbS;ac@ ll)lorjr c. 1t
o ((E:),

).
- 31 - i'iel




Pty s i 1} mod-

ily ((Ei:
h the canonical

)/NU wit

The ulcraproduct of the fam
Ei/U' (Bj)y 18

ulo U 1is the quotlent space lm((Ei)i 1

quotient norm;, and is denoted (Ei)U or ‘“01
ie€
called a Banach space ul;raproduct; in the case where Ei = E
for all 1 € 1 (Bl is also written EI/U and is rermed the
Banach space yltrapowver of E modulo U.
it is convenient and customary to denote elements of (Ei)U

by (Xi)U so that

(xi)U o= (xi)ie 1 + Ng.

y the

Notice that the quotient norm on (Ei)U is given b

equation:
ool o2 nienliu I RIPE S L NERIE

U of E there is @ canonical isometric

h ultrapover EI/
Tu:

For eac
g 1 of E into B

embeddin
i(x) = (xi)U where X; = x for all 1 e 1

LTl = 1im Pixgtl o= el le
U
are jsomet-

then E and EI/U

inite dimensional,
e compac

The closed balls of E ar
in E the 1imit

= 1%m \\xil

1f B is £
rically isomorphic.
ounded family (xi).1€ 1
.1) and \\1ﬁm xil\
a linear surjectio

for every b
in E (by theorem 1
+ 1lim x, is
i
isometri

map (X3)ie1 n
hence induces an c jsomorphism of ET/U and E.
osition introducés the theme of the

The following PTOP
ties of ultra

roper products.

structure—preserving P

The following classes of Banach spa

PROPOSITION 2.1,

closed under uyltraproducts:
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t so that

lim X, exists
U i

| so that the

n with kernel NU‘

ces are

(i) Banach slgebras
(ii) C* algebras:
(iii) C(K)-spaces:

(iv) LP spaces.

The class of JB* i :
triple systems is closed und
er ultrapowers

PROO[ ° To prove (i)’[ and (11) define the “atural "|Ultipllc

ation and involutionfon (E,),, =
i i‘u’

é

(%, )y o (y. ), 2=
TIERE LTS 7R ITRE C PR L B E
X i ‘o’

For (iii) not
e that C(K)
ultraproducts of -spaces are C*-algeb
r
Naimark the C(K)-spaces are C(K])-spaces bg thas anq henee
orem; . [}
m; (iv) requires the representat¥ e Gel'fand-
ion theorem for

LP spaces.

Finally, if (E, ||
[
[,y 4
then there exi ! s a JB* triple
sts M > 0 such system (cf. {2
that for all ° ])l
x,y,z2 € E

o0, s

y ) |os wlx] ] Tyl 1zl (*%)

so that (& ((E

ol )10 Il Il, ¢) is a JB* triple sy £
stem with
dl(x,)
lierr Wilger) #= Oy d)y

€I

N, 1s a J* §

U id

eal in & _((E)[) by (**) and hence (ef/u [ 1
' . )

is a JB* triple system.

3. UL : -
ES

One of the s ;
uccessful typi :
ultraproducts i ypical application
the stud fs is in the local theory of Ba hs of Banach space
y of the fini 3 . nach space
inite dimensional structure of B or d-e
anach spaces

and its relat g B P 7
ion to lobal structure In articular finite
£

representability -
¥y the most important concept of th
e local

theory h
- has a sim
ple powerful ultrapower charact
cterisation
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F is finitely represent-

Let E and F be Banach spacés.

able in E iff

for every finite dimensional subspace M

ists a finite dimens
and an i somorphism

for all € ? 0,
of F, there ex
E with dim N = dim M,
N such that

jonal subspace N of
¢ from M onto

el = (r+e) | Ixl ] ‘for all x € M.

A

(-elixll

The isomorphism ¢ is termed a (1+€) isomorphism. For

tion here are two results.

orienta

PROPOSITION 3.1.
(i} Every Banach space is finitely répresentable ijn itself.
(ii) Finite representabilicy is transitive.

presentative in R _»

the separable reflexive Banach space
. ne N} where

lp-sum of the family [1n :

(1ii) Every Banach space 1S finitely re

in C_» and 1in
ow
(0 L

nel n)p
i: js CM with su

? the

premum nporm (1 <p <)

The easy proof is omitted. Incomparably deeper is:

%, is finitely representable in every

THEOREM 3.2 (Dvoretzky).

infinite dimensional Banach spaceée.

The advertised characterisation of finite representability

is as follows:

F is finitely represencable in E iff there exists

THEOREM 3.3.
o a sub-

an ulcrafilte
space of EY/U.

r U on a set I such that F is isometric t

sitory note rhere is space
¢ feature of the proof of 3.3

index set I and the C

" PROOEF . In the format of an expo

just to isolat
in the choice of the

rafilter U on 1.

e one characteristi

which occurs
jon of the ult

- 34 -

onstruct-

Let I be the sel ;
ct of all pairs (M,€) where M | £
s a finlte

me o pace of F and € » 0 ial Y Y
al nsional subs . Partiall order I b

¢z (My,ep) < |
My,Ez2) iff M
filter A with ¢ on I: 1< Mzoand €1 2 €2,

Associate a

Io € A iff Io < I and there exists (MO ,Co) € I with

I =
(‘MIE) € I H (MOICO) (,(M,E))

Extend A to an ¢
ul B
traflgter U on I.

§
;
H

Since F is. fini /
initely re
/ presentable in
: E: for each

1= (M
{ i,ci) € I, there exists a (1+¢€ i
. Ni(: .. i) isomorphism ¢i from M,.
i
(1-e)]x]|] s .
5 HEos Ileg6all s (1ee )] x| for all
X € M
it

Defi .
efine a mapping J : F + EI/U

X, = ¢i(x, 1 X € Mi'

0 otherwise

J q i Xy
iS the re Ulred llnear isomet
. :

Note in parti
icular that EI
in E f /U is fin 1
or any ultrafilter U on a non tite*y representable
~empty set I,

3.2 and 3.3 img
. mpl
formly convex infi ? Y tﬁat the modulus of convexit
by the inite dimensional Banach y of & uni-
modulus of convexity of % space is dominated
2

Ultrapower t i
echniques allow one to deduce inf
nformation on

the global
str
ucture of E from its local struct
‘ure, The re-

formulati
on of loc \
sower principles al principles results in correspondi
. on
One of the best examples of thi ng ultra-
is process is:

THEOREM 3.4

(

UltlapOWeI fIlllClple of lOCal Reflexlvlty)

Let E be a Banach space. There exist an ultraf Iter on a
1 U

set I and a i
mapping J from E** into EI/U
such that
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B . 1

(i) J is an jsometric embedding of EX* into B /U.
1

ical embedding T of E into g~ /0.

(ii) J\E is the canon
(iii) J(E**) is @ norm=1 complemented subspace of E /U,
e is @ projection p of nor®m ] onto J(E*¥).

i.€- ther
Reflexivity is der-
(**) for all

there

rapower principle of Local
al Reflexivity:

PROOEF . The Ult
jved from the principle of LocC
finite dimensional subspaces M BX¥,

is a (1+€) isomorp

N C E* and € 7 0,

() m\MﬂE = XMMQE’
(2) <E, 00X 7 x,fy for all X cM, £€N.
e the set of all

raking I to b
1traf11ter y on L.

rdered wlth an
g ~E /U

ed as in 3.3,

Now proce
triples {M,N,€) partlally 0
ugse (**) to define @ mapping J

, wi(x) 1€ x € My
Ju = (xi)U, xy =
0 otherwise-

parts (1) and (ii) follow.
. 1
To complete the proof, define 2a mapping Q /u g ¥

o= lim X,
i

Qlixy) y e
1’0 U
a pall

s of the close

ing E with its can-
quxred

k ¥ compactnes

ined (1dent1£y
get P 7 JoQ to obtain the re

{EX*) .

Note that by 1.1 and the wea

of E** the 1imi

onical jmage in E**) .
projection of norm 1 onto J
4 is this: jf B is @ class of panach

nder ultraprod

pro]ectlo
£ biduals,

ucks and cont

one corollary of 3.
if£ p* =P ana |11l 2

ch is closed U
contractlve
r formation ©

spaces whi

ections {(p is a
then B is closed unde

i.e.

E €8 implies gr* € B.
The class of Jn* triple gystems is closed under Contractivc
_ 36 -

ractive pro;

P OiC
7 )
r crions . edu }
t so from 2.1 one deduces the following recent

theorem of §. Dineen {2]

THEOREM 3.5
AULUREE S22 Let (E II
the bidual (E** ! Il: b be a JB* .
t
C 11 11, 60 is a JB* cripl riple system. Then
iple system

Intuitivel a
Y S 1s a prop
: ,. local property of Banach spac
es i
erty P such that if % has P, then every Banach y
space 1
% ocall

Super-properties are the math -

emat
Let P be any

similar to E also had P
ically preci f '
. tp ecise explication of this int
erty of B@nach R
spaces. E '
every Banach s e e
> perty s i
e : lSp jlflnltely representable in Eyh&uper-p o
ca ;
ed a super-property iff whe ARG
never E has P

then E has super-P

Examples of
super- .
super-reflexivity per-properties include: unif
y. the properties "E is finit orm convexity,
nitely repres
entable

in G" and "G
is not "fini
initely representable in £
or arbitrar
Y

fixed Banach space G

The super-properti )
can be ordered in : h:::Z of infinite dimensional Banach
super-property , the fi rchy: there is a weakest (trivi Shrees
and the strongest su irst (non-trivial) super- tvial)

per-property H.  Their defis§:§erty o
ons run:

H(E :
(E) : E is a Hilbert space
C{E) : c, i .
: i i
o o, is not finitely representable in E
. e n E.
: E is infinite dimensional
3.1 and 3.2 |
.2 show
that the. following implicati
ons hold:

H(E) = Q(E) =
C({E
implies too thaé é:f>W(E) where Q is any super
is equivalent to the su property. 3.2
per-propert
. y B;

D(E) : ¢ j ini 3
: 1s finitely representable in E

ere Y °
e n
C of C Here i1s a recent
Ther ar ma haracterisations |

one derivin
g from results in [3]. Let BD b
e the pro
perty:
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every pounded domain in the compleX Banach space
a finite

E is blholomorphlcally equivalent to
f irreducible complex Banac

BD(E)
product o h manifolds.

Then C is equivalent to super-BD.

Immediate conseguences of the hierarchy of super-properties

are:
(1) Hilbert spaces possess every super—property;

(2) if %2 fails to have a given super -property Q, then
ce has Qj

no infinite dimensional Banach spa

al with even one (non-

(3) 1if E is infinite dimension
then co is not finitely rep-

trivial) super—property,

resentable in E.

4. CONCLUSION
ce ultraproduct was developed initially in
d mathematical logic.

ce analogues of

The Banach spa
£ functional analysis an

prising to find Banach spa
t-order model theory: downward Loewenheim-

Keisler-Shelah theorem ({81, SRR A simple
f the Banach-Mazur

an interaction o
Thus it is not sur
theorems of firs
skolem theorem,
corollary of these results is a version o

theorem:

Assuming the continuum hypothesis,
which contains (isom~-

r %{1

Banach space of density
of ¢p

COROLLARY 4.1.
h space of density characte
every
there 1s an ultrapower

a Banac
y ijsomorphic copies of)

etricall
In fact,

character at most X

satisfying 4.1.

ultraproduct technigues to non-

Recent applications of
be found in {(71.

linear classification problems can
eneralized to

rial of Section 2 can be g
(61.

the mate

Finally,
of locally convex spaces (51,

define ultrapowers
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there exists
|
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ON THE EXISTENCE OF MAXIMAL LOWER BOUNDS

7.8.M., fcllasten

A lower semilattice is a partially-ordered set in which
each two elements possess a maximum lower bound or infimum,

and a routine induction argument shows that in such a system

every finite set also possesses an infimum. Many partially-

ordered sets, of course, fail to behave so nicely.
tion one classic example, we can impose a natural partial order

To men-

on the four dimensional space-time continuum of special relat-

ivity by saying that one 'event' (x,y,z,t) precedes another
{(x',y',z',t') whenever light from the first could reach the

'place' of the second at or before the "time' of the second,

£l

thus:

(x,y,z,t) s (x',y',z2',t') <

Ax-x")% + (y-y')?% + (z-2')% 5 c(t'-t)

where the positive constant c represents the speed of light.
It can be shown that in this structure the set of lower bounds
of two events (their "common history', so to speak) never poss-

esses a maximum element, except in the trivial case where one

of the events precedes the other. There is, however, in this

example and in many others, an abundance of maximal lower
bounds: the common history of two events is 'inductive' in the

sense described below. This note arises from an investigation

of maximal lower bounds for two or more elements; in particular
it concerns the failure of the analogue of the result referred

to in the first sentence above: inductiveness of the set of

lower bounds for each two elements does not imply the same

property for three.

Following Birkhoff (2] let us call a non-null subset A
of a partially-ordered set (E,s) inductive when to each point
x of A there corresponds a maximal point m of A satlsfying

- 40 -
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|

i
|

X 5 m, T

0 avold possible confusion we

lately that tn should point oyt Lied-

is ¢ "t
meaning of the Lerm differg from that £
C o]

Bourbaki
. ({3, bPage 154), who applies it ¢
partially-ordered set such o Mot

bound in a, that every

: : Of course, Zorn's lemma
o be inductive in the Bi
verse,

chain in A hasg an upper

readily shows

t rkhoff sense. o2 e

ake E as the set of points

plane satisfying both(.1 «
H

To disprove the con-
(x,y) in the coordinate
’ X-y < 1 and x
inatewise partial order described b vEn
{ Yy
¢

Gay) s ity

P

with the coord-

” .
i1l and only if x ¢x* and y sy',

Then E (as ga Subset of itself)
each of its members (x,v) lies

((Tex-y)/2, (1-x+y)/2), but is
the chain {x,y) € E : x =

C
is Blrkhoff—inductive" since
under the maximal member
not "Bourbaki—inductive"

0} has no upper bound in E

since

Now consider the followin
to (E, s},

9 condition p_(q
@ denoting a cardinal number: g . Triesne
for each non-null subset B of

E :
cardinality at most q having
1

the set L(B
all its common lower bo N

and inductive.

unds is non-nul}] ”L‘G)

’ I( )
We te[m (E S) a u a ~System if it Satisfles thls Collditioll

If @ and 8 a
is i 2 re two cardinal numbers satisfying o ¢ B th
ate |
o that uL(B) implies . (a); we her i .
ple to show that in general theL e e
valid: that is,
distinct,

PROPOSITION 1
*‘N-_“.
Let a 2 2 pe a8 given cardinal numbd
¢ mber,

dered set satisf
evey num
ery cardlnal umber a

dition uL(a)_

. There
in e
Ying condition UL(G') for

less ¢
) han o, but noe Satisfying conp-



ke an
t of positive integers by N. Ta
e

enoté the ° a set D of cardinality a. Y,

D

i i 1ity @, C
oo™ cardin? a A, n g N), a se
2,’”; get A of tinct elements dn (a € ; L N
inde ing the 412 ising the distinct elements :
- o i i ents
mpr’dl omp Lity W comprising the distinct elem t
e isjoi se
‘ carset c of Cardlnx and coare pairwise-disjoint. On thef »
e o11-
e e N where D’- e a partial order by specifying, as "
n ' .
oy ° y x we defi of each of three typical eleme
g =C ub ¢ lower pounds
- gric
the S
s
W ,da and X | .
ot ° while ¢, is minimu
n h of Cyr Cor =co Ch_qt 1
y eac 1 .
N [} '
(i) n
in Ei .
f c 'CZ' oy n'
a , each 0 ™ .
S 1'eec A\ (a) and also
(i3] " e 11 n and for all'e
for a
15 a s aj
(ix ¢ for all n. |
! ich i diagrammatic
to refer to Fig. 1, which is a g i
ful *9 i se where a = 3,
1t may be helP £ this construct 1in the ca
tion O
senta ¢
repre partlcular tha | .
ote ¢ U D then L(z) is finite.
if z €
n-null
cardinal less than a, and B a no oy
pe? i ': three cases
now Let @ cardinality B 15 at most a';
g whose
t of
subse
i ; '3 s re
arise’ py (*), L{B) is finite, and therefo
. then
cXx: t
n b=
| indUCtlve' a) for some a: then
qp =1, that is, B = {x
X an - . ..
(11) B o L(x?) is trivially inductiv
B) =
8 g2sB sa <oz then L(B) & C U D sz L(B)f:
’ <
(111) Be B e ¢ A such that x®e x \ B. Hence Bn -
‘ i
ehere 2 N: so while each member of D 1 L(B)
€ . ( .
for alt ? L(;) each <, in L(B) lies under the ma
i i : ! N > s e.
maxinal 7 3% of L(B), and L(B) is again inductiv
jmal member C¢p "
i On the othe
(a') is therefore satisfied. ‘ ey
it] g i ot of E having ne
pndition ¥, X is a subse
The €0 .« pot: for
a) 1S
pand: ML
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FIGURE 1

a, and L(X) = C has no maximal element.

We can, however, obtain further positive connections bet-

ween the conditions uL(a) either by imposing some additional

condition on the partial ordering, or by insisting that it be
compatible with a suitable topology. Note the following def-

initions: (E,s) is down~directed if each two of its elements

have at least one common lower bound, a subset of (E,s) is

called diverse if no two elements of it are commensurable, a

decreasing subset D of E is one for which x s y and Y& D to-

gether imply x ¢ D, and a partially-ordered topological space

{(E,s,1} is termed'T1—ordéred [4] if,

for each of its elements
x!

both L{x) and the set M(x) of all the upper bounds of x are
closed sets,
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5 infinite di
E,<) has no 1n
LEMMA If {E,

re pre
ctive decreasing subsets 4 p

indu
of sets of the form L{x).

Clearly such

PROOF . -
rest, it suffices to note that 1

1
subset, then D = U{L(m)

points of D; and

2)-system wit
PROPOSITION 2. A DL( )=sYy
PROPOUSII AV =

tem for every po
sets 1s a uL(n) syste

PROOF For each pair of points X,
denote by n
so that

(x,y) the set of maxima

Lix,y) = U(L(m)

Observe that for any

Lix,y,z) = utL{n) n ¢ nf

and if each of the (dlverse) sets
this (by the lemma) is inductive a

s
The obvious jnduction extends thi

proposition.

Let (E,s,T

PROPOSITION 3.

orderedi then it is a uL

PROOF .

n
a set is inductive decreasing.

m € M) where M is t

that M, being diverse,

} be down—directed.

(a)-system for every cardin

Let B be a non-null subset of E.

b € B) of closed subsets of compac

its

verse subsets: then

cisely the finite unions

For the
is an inductive decreasing
he set of maximal
is here finite.

, b-
hout infinite diverse su

sitive 1nteger n.

y in the uL(Z)—system (E,S)

1 lower bounds of x and Y.

m € n(k,y)).

z in E we have

m,z), m€ nix,y)};
nim,z), nix,y) is finite,

i - tem.
nd (E,s) is a uL(J) sys

argument to establish the

compact and T1-
al a2z 1.

The family
t E has the finite

o fore
intersection property, and therefo
¢ = N(L(b) : b€ B} = L(B)
i £ L(B), and C
{6}, Theorem 1). Let z be any pOlnt)On o .
o n M}z) N L(B); again, the family {M{c e o
e bsets of {closed, and therefore compa
of closed subse
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|
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has the finite intersection property, whence C has an upper
bound in M{z) N L(B); an application of Zorn's lemma now shows

that M(z) I L(B) has a maximal point, which is then maximal in
L(B) and lies over z: thus L{B) is inductive.

REMARKS

Bearing in mind the power and the widespread use of max-
imality arguments in ﬁany areas of mathematics, there are sur-

prisingly few references in the literature to the ideas here

presented. The only major investigation seems to be that of

Benado (see, . g. {1)) who explored in detail what we have herew

termed L (2)~systems (without the assumption of down- dlrected-

ness) but not uL(3) or beyond. The present writer's involve-

ment is due to an attempt to generalize the idea of a topolog-
ical semilattice - by which is meant a semilattice equipped

with a topology such that the map taking each pair of elements

to their infimum is continuous. If in an arbitrary down-

directed partially-ordered topological space one considers
continuity of the map taking each n-tuple of points to the set
of all their common lower bounds, having first made a sensible
choice of topology for the ranges of these maps, one gets a
hierarchy of conditions (for varylng n) each of which special-
izes to "continuity of the infimum" in the semilattice case.
It transpires ({see [5]) that the conditions M (n) are conven-

ient for obtaining satisfactory product theorems concerning
such bound-continuity conditions.

The exploration of these
conditions is still incomplete:

for example, no full understan-
dlng of when a sub-(order/topological)- ~system inherits them

has been obtained, and uL(n)—systems may well have a role to

play in this matter also.
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THE USE OF BERNSTEIN POLYNOMIAES IN CAD/CAM .. BEZIER CURVES

Danied . Dutty

INTRODUCTION

Many other techniques are available
for modelling curves and surfaces such as B-splines, cubic
splines, standard polynomial interpolation, parabolic blending
etc. A useful book on these topics is (2] (with code in
BASIC). We include Bezjer curves here for two main reasons:
first, their practical value, and, second, their roots in

classical approximation theory.

MATHEMATICAL BACKGROUND

nomial,

sense that neither the statement of the theorem nor its proof

allows us to construct the polynomial. The result goes as
follows.

[0,1]. Given € > 0, there exists an integer N > 0 and a poly-

nomial P(t) of the same degree such that
[E(E) = P(t)| < & for all te [0,1]. (1)

This result forms the basis of much numerical analysis, e.q.

numerical integration ang interpolation, finite element anal-
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al P which satisfies (1)

ysis etc. We note that the pOlyl\OU.\.
not n Y rp t g ype.
1S o} ECeSSa[ll OE inte Ola in t e

ial which
2) actually constructed a polynomi
{191 a

pernsteln The result is:

at;lsfled the C()Ildltl theorem.
S ons Of the

interval [0,1]).
tinuous function on the int
e a con

Let E(t) b . o
fine the nth degree polynomial P(f;
Defli
| . —. K 2
) nt eI -0)" Y E3/n) . (2)
pP(f;t) = .[ TTTn—371 ‘
i ; this

14 ]i
Then the ol converge uni(onnly on [0,'
3 i 8
)omlals P(f,t) ' ' .
h ] y’Ve” € ? 0 there exists an integer N SUC) that for
i ’
means that 81

all n z N we have

; (3)
|£(L) - p(f;t)] <& for all t;e {0,11.

For a proof of this result, see [31].
o

0 ER CURVES 1
o (2) we define the so-called contro

In representation

points | ) .
p = f(j/n) for J =0, ...,
bl
d the so-called blending functions
an
. s )
S E— P L (
By,nlt) = F{a-30
’

Y
In thls case wae can erte the Iesultl“g curve as a PO]. llou\lal

of degree n as follows:

) (t) (6)
= [ p.B. .
P(t) yz0 3 j,n

L)y
ion: let py = (Xg.¥y2y

K r equation: 3 ]

Notice that (6) is a vecto s of the control vertices and

e Then from (6) we have

j o= 0, coen Ny

. L)),
suppose Lthat P{t) = {x{t),ylt), =(

- A8 -

the following:

n
x{t) = jEO x)Bj,n(t)
n
y(e) = T yoB. (t)
=0 3 J.n
n
z(t) = jgo Zij'n(t)

These last three equatio@g form the basis for any computer imp-
lementation of Bezier cu%ves. Input for such a Program would
be the control pofnts and the number of subdivisions of the

interval 0 s ¢t ¢ 1.

ermine the number of points on the newly generated Bezier

This last Parameter will basically det-

curve, In most cases the code would be written in FORTRAN,

REMARKS

Only the first and last vertices of the polygon actually lie
on the curve; however, the other vertices define the derivat-

ives, order ang shape of the curve (see Fig. 1),

feeling for the CAD/CaM designer,

3. The number of polygon vertices fixes the order of the
resulting polynomial which defines the curve and furthermore,
the Bernstein basis has a global span, i.e, the values of the
blending functions given by (5) are‘nonzero for all parameter
values over the entire span of the curve, Thus, changing a
control vertex changes tﬁe entire curve. This eliminates ;he
Possibility of producing local change, These problems can be
Overcome but one must resort to the so-called B-splines (cf.

(43,




BEZIER SURFACES

Equation (6) can be generalized to three-dimensional sur-
faces by generating the Cartesian i

a vector
equation):
. n m
P(t,s) = | 7 (£)B, (s) (8)
) 120 51 i3 7i,n A 3,
; In this case we have tofinput (n+1) x (m+1) control points
{p,). For an implemertation of these surfaces, see [2), pp.
4 230-231, F
CONCLUSION

We are only able to give a

short review of one topic in a
fast growing area,

Many other techniques exist for approxim-
aces and new methods are

For a good introduction to Com
{4}, in particular pp, 309-331,

being constantly
puter Graphics, see

developed,

Some Bezier Curves and Associated Control ertex Po Yygor
o % 1 ons
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To demonstrate that a connected topological space may not
be locally connected, authors of modern text-books on point-
set topology usually employ an example, either of a geometrical
nature in the real plane {such as the so-called "topologist's
sine curve". and "infini#e broom"), or of a number theoretical
nature in the integers (lsuch as the "relatively prime integer
topology"), or of an anélytical nature in the real line (such
as the "indiscrefe or pointed extensions of the reals" and the
The
complete exposition of such an example tends to rely heavily

"one-point compactification of the rationals"; see [1}).

on a knowledge of the various intrinsic properties of the supp-
orting set. For the instructor who may, perhaps, prefer a
more abstract and topologically succinct example, an alternat-

ive is readily available.

Let X be an infinite set containing distinct points x,y.
A topology Tt for X may be defined by declaring open, apart
from @ and X itself, those subsets G of X for which y ¢ G and
either x ¢ G or X-G contains (at most) a finite number of points.
Observe that T = (v U e(x])) ] e(y), where Y denotes the well

‘known cofinite topology for X and €{x}, e{y) denote, respect-

ively, the excluded point tépologies (GEX : x ¢ G) U {X) and
(6ESX :y ¢ G U I(X) (see (1]). That is,
ion of a Fort topology Y U €{x) and an excluded point topology
elyl.

T is the intersect-

It is immediate that (X, T) is a connected space (since
T Cely) and (X,e(y)) is obviously a connected space). Let
Thus y ¢ U and
If z€ U, z # x, then.(z) and U-{z] are each

U be any proper Tt-open neighbourhood of x.
X-U i3 finite.
T-open {since y belongs to neither, x ¢ (z} and X-{(U-(z)) =
(X-U) U (2} is finite) so that U is not T-connected. It
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follows that (X,T) is not locally connected (at x).
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NONCOMMUTATIVE ANTICOMMUTATIVE RINGS

Siephen Buckley and Desmond MacHale

An associative ring R is said‘to be anticommutative if
Xy + yx = 0 for all x,y ¢ R. If R has characteristic 2, then
the concepts of commutativity and anticommutativity coincide,
but Z,, with the usual aédition and trivial multiplication,
shows that an anticommugétive ring need not have characteristic
2. / '

If a ring R satisfies x? = 0 for all x € R then clearly
R is anticommutative, but not conversely. However, if R is
anticommutative it is easy to verify that R satisfies each of
the following identities,

(i) 2x? = ¢ (ii) (xy - yx)? = ¢ (iii) x%y - yx? = 0,

Frequently, when looking at commutativity theorems for
rings, one requires counterexamples to show that certain con-
ditions are not sufficient for commutativity, For example,
if (xy)? = x?y? for all X:.y € R and either of the following
conditions holds then R is commutative:

{a) R has unity; (b) R has no non-zero

nilpotent elements.

To show that some such additional condition is necessary,
it is enough to produce a non-commutative ring in which x? = ¢
for all x € R, In this note, for finite rings, we pose the
question, *what is the order of & shallesc noncommutative anti-
commutative ring?” and show that the answer is 27, Since
this number is odd, we see that it is also the answer to the

question, "what 1s the order of a smallest noncommutative ring

satisfying the identity x? = g2,




First of all we produce a ring of order 27 with the des-
(aij) be the ring of those 4x4 mat-
=0 if j s i,

ired properties. Let A =
rices with entries in the field 2,, such that aij

a,; = 0, a,, = a,; and a;, = -3;,- Then it is easily checked

that R is a noncommutative anticommutative ring of order 27.
In more abstract terms, R can be expressed as follows: 1if Cn

is the cyclic group of order n and © denotes the direct sum

of groups, then (R,+} = C; @ C, ©C, = <a> @ <> ® <c>, where

cb = 0, ab = c determines

a? = b? = ¢c? = ac = bc = ca = -ba =

the multiplicative operation in R.

We proceed to show that no ring of ofder less than 27
can be both noncommutative and anticommutative, so let R be
a ring with these properties. ‘since every finite ring is
the direct sum of rings of prime-power order and since a direct
sum of rings is anticommutative if and iny if each of its
direct summands is anticommutative, we may confine our att-

ention to rings of prime-power order. ‘If {R,+) is cyclic,

then R is commutative - this eliminates rings of prime order
and if |R| = p? for some prime p, we may assume (R,+} =Cp® Cpe
Clearly, we may also eliminate rings of characteristic 2.

Thus we need only consider the following values of |R| with

corresponding structures for (R,+}:
(1) |r| = 8, (R,+) = C, @ C_;
(ii) |R| = 9, (R,+) = C, @ C;
(iii) |R| = 16, (R,+) = C, ® Cy, C, ® C; ® Cy, C, @ Cy;
(iv) |R] = 25, (R,+} = C5 @ Cq.

We can eliminate 9 and 25 using the following result.

LEMMA. If p is an odd prime, then.Cp ] Cp cannot be the add-

itive group of a noncommutative anticommutative ring.

Let R be a counterexample and let (R,+} = ¢a> @ <b>.

= 0 for all x € R, so
0 =

PROOF .
Since R is anticommutative, x.x + xX.X

x? = 0, since |R| is odd. If ab = 0 then ab + ba =
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|
3

ba = 0 =

ab, so R i iy
o , 1s commutative, a contradiction. Suppose
ab = ra + sb where r,se z Then a’b = z
sab = 0, and so s = 0 Fin llp ot
=0, ally ab = ra, so ab?
= rab = 0

which gives ab = 0, a contradiction.
Next, we suppose that (R,+} = C, @ é
) 4
R = <a> @ <b>, where b has order 4 or g
2ab = (2a)b = 0, so 2ab = ab + ba,
case (R,+) =C, ® C, @
§

or C, @ C, and
In either case,
' and R is commutative. The
ve ate 1ott wrin i € Cu.lé ?1smissed in a similar manner.
@0551b111ty that (R,+} = ¢, @ ¢
that (R,+) = <§> ® <b> where 4a = 4 = 0 : .
case where a? = p? . g, R

Suppose
Consider first the

Then we get a contradiction,
Thus we

the proof of the lemma -
. May assume that one generator
2a? = 0 2
- » a“€ {2a,2b,2
j :et of elements of order 2 in R. Suppose fir;t éhaEZbZ'
an et ab = ra + o
sb, Then 2ab = a’b = a(ab) =
This gives (sr)a + s{s-2)b = 0
r is even.
order 2 and so R is commutative,

and ab = Then abz -

(a say) satisfies a? £ 0, Since

where r,s ¢ z,.

2
ra® + sab = 2ra + sab.

s is even and if s £ 0 Hence
) This implies that

ab has
a contradiction.
{ab)b =

2a, a contradiction.

ra, r = %7, Thus s = 0

2ab? = a(2b?) = ¢ =

rab = r?z = a, so

Fi
inally, we may Suppose that a? = 2b, since if a?

we may replace b in the basis by a+b If S

{rs)a + (2r+s?)b = o0, :

also, so ab has order 2,

2a+2b
o ' ab = ra + sb, we get

Us s 1s even and if s ¢ 0, r is even
a contradiction.

2 2 . Hence s = 0
L +s° =0, r is even, 2ab = ; SO

0 and we are finished,
Let S be the rin
g of order 32 where {
e ' ' S,+}) = ¢a> @ ¢h>
s @ Cy, with a? = 4a, p? = 2b, ab = -ba = 23 Then §

non i i ; ' s ‘

commutative anticommutative ring of order a ,
By our previous analysis, . R
addition,

oo S is a smallest such 2-ring and in
e a sTallest such ring of even order. Finall
ve that S is a smallest ring of the desired t .

that (S,+} is a 2-generator group.

Ype such

Depaniment of Aalhematics,
Univensity College Conk,
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DYNAMICAL LIE ALGEBRAS

ALlan Solomon

An algebra is just a vector space with multiplication.

A Lie Algebra has a peculiar form of multiplication referred to

as commutation - concretely realized by matrices x and y

[x,yl = Xy - ¥¥%,
There is no loss

together with the axioms following from this.

of generality in considering all finite dimensional Lie algebras

as just algebras of matrices.

There seem to be at least two reasons why Lie algebras play

a prominent role in modern theoretical physics:

1. The Symmetry Aspect: Theories which undeftake to provide

a description of space and time start by emphasising the under-

lying symmetry, pefore going on to give more detailed discuss-

Thus if we say "Empty space looks the

jons of the mechanics.
terpreted as "rranslational Symmetry"

same everywhere" this is in

{and such symmetries do in fact lead to observable conservation

hematical formulation of this type of symmetry
and Lie algebras are

laws). The mat
leads to a structure called a Lie Group,

ed to Lie ‘groups in much the same way as the addi
ive properties

relat tive
properties of logarithms relate to the multiplicat

of numbers.

2. The Dynamical Aspect: Wwhen we get down to giving a more

detailed mechanical description of nature, we must provide

dynamical laws, such as Newton's laws for Classical Mechanics.

The latter are expressed in differential calculus form, so it

bvious that the techniques of differential calculus

is fairly o
One for-

will prove useful in a study of classical mechanics.

mulation of the basic laws of Quantum Mechanics, however, util-

izes the Lie algebra commutator introduced above - for example

the famous leisenberg crelation for position operator g and
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moimentum operator p {(and unit operator I)

lg,p] = ihI

(where h is Planck'
nck's constant over 2n). If we take {qg,p,I}

as a b i
asis in a (complex) vector space, then the Heisenbe
rg

relati i
ion (together with [q,I] = [p/I) = 0) gives us a Lie alg

(the ”else“berg algebra)- It is “0t SUIPIISUIQ
ebra StIUCtUIe 1]

therefore, that Lie algebras play a pivotal role
of quantum dynamics. {

/

/

in a discussion

descr;;t;zninfthe{r second role, that of providing a dynamical
fenex e of qudantum theory, that Lie algebras have become
thisnisydi:ZI:::iﬁgly fashionable, as Dynamical Lie Algebras;
eometey oo ebrom thelr use in the first context, that of
ey diszinz:?. ?o the pure mathematician, of course,
s e ne Ol ion, it is the same Lie algebra structure
y the application which differs, In fact
the same (isomorphic) Lie algebra may be used in two diffe;ent

contexts, in one case a
s a symmetry algebra
a dynamical algebra. = and the other as

I“e Sl"plest exar ple Of t]le precedillg discussio“ is the
algebra o3 Ihls is defi“ed as the set Of 3){3 real a“ti"
Sy"""EtIlC "latrices- As a (Ieal) JQCtOI Spacel it is three

i W e
dluensional and e can choose a basis (Jl ,J J ) wher
21¥3 7 ¢

[J J = J “d the two il(lil I CO”"”utati nre o] [e)
18svY2 ] 3 a s a (o} lati ns btained
by CyCllC permutatio“ alSO hOld. IlliS algebla iS well k“owll
g
as tlle Lie al ebza Of the quUP Of rotations in th]: e"d men-
e 1
Slonal space. ROtathnal Symmetry iS, Of course an assum d
? e

symm

ymmetry of the world, and so this exemplifies the s

use of Lie algebraic theory. .
written R =

Any rotation matrix R
may be
exp J z
SR p J, where J 3 a,J, + a;J; + a;J; is an element
H is makes R automatically orthogonal - and is
essentially the logarithm’ of R. e

”OWeVeI thls same alge}JIa alSO occurs as a dy“amical alg-
¢

eb!a i”l fOI exa“plel the theOI) Of supeICOUdUCtiVit)' SUC“
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quantum systems are specified by writing down a hamiltonian
operator H; eigenvalues of N, for example, give the set of
energy levels of the system. Tn the case of a simple model
of superconductivity -~ the so-called BCS model named after the
americans J. Bardeen, L.N. Coopes and J.R. schrieffer who dev-

eloped it in 1957 - this hamiltonian may be written as

H = a‘jl + a232 + a,&,.
(Here the real numbers a,, a, and a; are related to the kinetic
and potential energy of the system.) Now of course the 31 are
no longer 3x3 matrices; they are operators. g But they have
precisely the same commutation relations as the Ji above of
s0(3).
that this algebra is not a symmetry algebra of H; that 1is, H
does not commute with the 3i (thaE is, [Hf3i] 4 0) and it does
not commute with the "rotations" R = exp J;corresponding to
the 31 (that is, §H§"£ H). However, Lie élgebraic techniques
We know that

a 3x3 anti-symmetric matrix may be diagonalized by an orthog-

Thus H may be considered as an element of 40(3). Note

can now be utilized to solve the BCS problem.
onal matrix. This purely algebraic result can be extended
to any dimension, and indeed to the operator H above. We may

thus find explicitly a "rotation" R such that, for example,

fHR™Y = ady, (af = al, +a, + al).
since J; may be chosen to be a diagonal operator, the spectrum
of ﬁﬂﬁ_‘, and thus that of H, is immediate. This gives the

energy levels of the system.

The most obvious use of theée dynamical algebras - to
obtain the spectrum of a quantum system - gives them the name
Spectrum Generating Algebras. (Thg‘corresponding Lie groups
are often referred to as Dynémical Groups. )" Their first use
in Elementary particle Physics dates from the work of Y. Ne'eman
and collaborators in the éarly sixties; subsequently the present
writer employed the method in condensed matter physics (super-
fluidity, 1970) and there has recently been a resurgence in

nuclear physics {the Interacting Boson Model) as well as in

- 60 =

stralghtforward potential theorya‘ Current applicati £
ons o

the t
echnigue are to gquantum systems exhibiting many coexisti
ng

phases Simulta“eously - such as Superconductivity and magnetls”la

. I have given no references in this short, informal d
_introductory note; Arno Bohm and Yuval Ne'eman of Austi h
:ie ;urrently editing a review moﬁograph ("Spectrumu:eizéa:?xas
gebras and Dynamic " i o
Mosbras @ theyhistoi; Groups", World Scientific, 1987) which
f
i

!
i
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MATHEMAT ICAL EDUCATION

SOME THOUGHTS ON THE ROLE OF MATHEMATICS™

P.F. Hodnett

1. VARIOUS ROLES OF MATHEMATICS
Mathematics appears in a variety of guises as a language,

an analytical tool, a vocation. .

Mathematics 1is the language of quantities, size, order,

The need to communicate in a guantified manner req-

shape.
Hence the

uires a mastery of the language, 1.e. mathematics.
and physicists to be

traditional requirement for engineers
subBects moving towards

educated mathematically and with more
quantification, e.g. biology, soclal science, psychology, econ-
omics, management science, etc. there is a growing requirement
for a mathematical education for a larger section of the prof-

essional community than has been the case in the past.

Mathematics is used as an analytical tool for example by

a physical system which for

a differential equation. The

yields understanding of the be-

engineers to create a model of
instance may be represented by

solution of the equation which
haviour of the model and hence the physical system requires
knowledge of certain mathematical technigues such as the Lap-
lace Transform, Fourler Series, Bessel functions, Legendre

As more subjects become quantified different

functions, etc.
For example,

mathematical technigues are becoming important.
the techniques of Operations Research are now important in

quantifying management science as are the techniques of prob-

ability and combinatorics in relation to social science.

% This is a revised version of a talk given at the NCEA Seminar on Science
and Computing Education in NCEA designated institutions held in Tralee,

RTC, 12 April, 1985.
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1.1 MATHEMATICS - A VOCATION

Mathematics is a vocation when it is employed as a body
of technique in solving business and industrial problems.
Vocational programmes in Applied Mathematics exist at NIHE
Limerick and one in Applied Mathematical Science at NIHE '
Dublin. These programmes have vocational objectives. ’The
objective of the programme at Limerick is to produce graduates
with developed analytical skills and an ability to model real
indus:rial or busiﬁess systems as situations suitable for quan-

itative analysis /@and optimization. To ac

the course‘}ncludés basic elements of Busin:::v:tzgfzz :i:s
Englneering Science both to facilitate effective communication
with colleagues whose training is in the theory of business

or the practice of engineering and to ensure that a realistic
model is created of the system under investigation. Exper-
tise in modelling is developed through modules in System
Theory, Operations Research and Industrial Engineering. Anal-
ytical and computational skills are developed through modules

in Mathematics, Statistics and Computer Science. A project

~in the final year of the course provides the opportunity to

integrate the different elements in the programme in modellin
and analysing a real industrial or business problem, of theg
three graduating classes to date (at Limerick) totallingva .;?
roximately forty students all received ready employment inp:
range of positions in industry and business. The type of job
and type of employer ranged over management information systems
at a multinational company; statistical analysis for a market
survey firm; software development for a computer manufacturer;
software development for a manufacturer of electrical equipme;t'
financial services in a Semi-State company; accountancy in a ,
chartered accounting firm; production planning in a multinat-
ignal company; actuarial work with an insurance company; qualit
control in a manufacturing company; a variety of comput;r pro —y
ramming and software development positions in the computer ’
;ndustry.
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i

ecord is similar to the sit-

This encouraging employment r
wation in the US where current demand for applied mathematics
h a rate that starting salaries now

graduates 1s growing at suc
ineers and exceed those for bus -~

rival those for electrical eng
The supply of graduates from tho
grammes such as

iness graduates. se univer-

sities with established applied mathematics pro
Brown University; Rensselaer Polytechnic Institute and New York

University does not saﬁisfy the demand and other universities
evised their mathematics curr-

such as Clemson University have T

jculum towards applications of mathematics so as to prepare

students for roles in business and industry. i

m companies like AT & T and General

Employers range fro
to Stan-

Motors with large research and development sections
dard 0il Co. of california where the Mathematics and Statistics
Consulting group cut the coét of testing new locomotive oil
additives from $240,000 to $3,000 by showiﬁg that one short

as statistically equivalent to the results of 40

engine test w
Other companies who prev-

longer tests previously employed.

id not employ mathematicians n
e distribution company

“a universal lang-

jously d ow realize according to

the Recruiting officer for the larg
Foremost-McKessian Inc. that mathematics 1s
vage for attacking problems". One problem this company faces

i{s to devise the most cost-effective way to adjust distribution

networks in response to an increasingly fast-changing market

place.

programme at NIHE, Dublin which has not yet graduated

The
mathematical modelling.

students has a particular emphasis on
Both the programmes at Limerick and publin have vocational
goals in contrast to those programmes ¥

arily with the study of mathematics.

hich are concerned prim-

2. CHANGING EMPHASIS IN MATHEMATICS

s and examples are the UK and the US, the

In many countrie
hematics as a

ecent past on the study of mat

emphasis of the r
traditional connect-

self-contained subject is receding and the

;&
|
i
?
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ion bet ee i o
W n mathematlcs and its application is being restored
e
ment as ccocurr 'th th nt of comp £
his mov h [e) ed Wi e adve ucers Since

now reali
o Withs:;: :?ZEIE of problems can be formulated and anal-
AN ;ati computer. Of course the move away
Jon the sy of e tematics as an autonomous discipline was
B o neonneet fouodthe declining enrollment in such cour-
e e e ! nd the courses unattractive and employers
nere wninterest thisfz::;u:ting graduates from the courses.
there are appearing gew thhnzlz:::En:eZZi:éthe:atics o
chexe o ] ing differen -
=" ComPUterF;Zi:§2:gle, the mathematics which is the la:g:::Z
o orderih consists of set theory, equivalence relat-
g, Boolean algebra, logic networks, graph theory
’

combinatorics Th
. ese pure mathematics j
subjects of the
recent

P o PP ° erestl“gly muc f this
ast have f u“d new a llCathllS Int u h o] h

material is

e Szi:gc:e:ezént to the quantification of behavioural

et soponee u ;ects such as sociology, psychology and

e e re. ‘ evelopments in electronics relating to

ToLed oyarens Co::%re the language of discrete mathematics

e inuous mathematics of electrical and mech-
ring and hence require difference rather than

differential e i
quations and Z-tr .
Eransforms. ansforms in place of Laplace

3. SUBJECT QUANTIFICATION

Th i
- lere is a move towards quantification of
' ology, sociology, psychology, psychiatry
sci
ence etc. where the fundamental dynamics 0;

syst
ystems are not yet properly understood F
the 4th Conference on : .

subjects such
management

the underlying
° example in 1986
of Biologlcal Systems toszzzzjza:igi; T o e pmamtes
Theoretical Mechanics Tl
an invited lecture by
on "A New Approach to
Form”, There 1is now

Oxford University.

The 26th British
Co%loqu1um at Leeds in March, 1985 heard
) r

J.D. i
o Murray (an applied mathematician)

e Generation of Biological Pattern and
a Centre for Mathematical Biology at

J.D,
Murray emphasises that for mathemati
cs
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to Contfjb\l‘e to the q\la“t if‘(:at.ic)ll of C)ther Sub‘eCts it is

in
est substantial time
necessary for mathematiclans to inv

thematics
ttempting to understand the subject to which the ma
a

is to be applied. Mathe!llaticialls must develop an UHGEISta“d

fruit-
her scientific subjects in order to interact fr

S ere hith-

ch w
fully with sclentists in quantifying subjects whi

le in the
erto described in qualitative terms. To play a ro

ation in other subj
. move towards quantific e eation for nem”

ect areas, mathemat-

icians must actively seek new area

ematics.

g

f hich
Tt is frequently found that the mathematical models w

1s which
ise in the new quantification of subjects are mode
ar

sly been studied in relation to other subjects.

have previou e ote

nsight.
Also the simplest models often give most ;n51g

. motion
the equation of simple harmonic motion (de;cribing the

of a linear spring) is

(1)

2x
tZ

o

+ nx = 0

|

[a¥

when equation (1) is altered to

(2)

gi(—]+ n?sinx = 0,

i des(:IibeS the IHOtiC)Xl Of a Si“lple P Hdu um o] a “O""linear
t e l ( r

spring) Equation (2f can be transformed into

2x
tZ

7

3)
+ ax + bx? = 0, (

|

o

e added to equation
ts. When two terms ar
where a,b are constan

(3) so that it becomes

g_}_?g + kg—)é + ax + b)(3 = f cos wt, (4)
acz *°

wher k a d w are Constall s the equatio“ is Called Duff"
e f n t 2
7

he
on and has been widely studied in relation to t

ing s eaet This same equation has rec-

vibrations of mechanical systems. e
ently been used {n modelling aspects of the
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aviour of the

brain (see [1]).

It is, perhaps, not too surprising that

Duffing's equation might model diverse phenomena since it is
one of the simplest yet realistic models of movement a
an equilibrium state with d2%x/dt?

way from
representing accelefation,

ax + bx? representing the inherent attractive force (non-linear)
of the system towards equilibrium, kg% representing the resis-
tance of the system to movement (i.e. inertia) and f cos wt rep-
resenting a periodic external force attempting to create move-

ment. /
H
f
/

4. INTEGRATION OF MATHEMATICS WITH APPLICATIONS

In the past mathematics and its applications was integ-

rated in a cohesive whole. In the more recent past this int-

egration was broken with an overemphasis on the language and
notational aspects of mathematics with consequent adverse eff-

ects of an educational and vocational nature. An example (in

this author's view) of such an adverse educational result is
the presence of set theory as a notational device in the Leav-
ing Certificate mathematics syllabus without other material in
the syllabus to which set theory can be applied. This can

lead students to view mathematics only as a language divorced
from applications.

In the vocational or training sense the study of mathemat-
ics involves concentration on accuracy and emphasis on the fact

that there is only one correct solution to a properly posed

mathematical model. This approach involves in-depth study

and detailed analysis and constrasts sharply (i) with the
reality of attempting to create mathematical models where some-

times there is uncertainty about the input data (for example in

economic models) and (ii) with the case where a crude model is
most appropriate either because an approximately correct answer

(e.g. 70% - 80% correct).is sufficient or a rapid answer is

required. Students therefore need to experience the necessity

of producing crude simple models which yield approximately

correct but rapid results. Otherwise, there is a danger that
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ead
mphasis on accuracy and 100% correct answers will 1
overe

i ver
to the production of graduates with a need to analyse e y

problem in depth before producing any answer.

t
The relative absence of a large research and developmen

of
ector in the industry of this country means the absence
]

wh t is in Other COU“tIleS a tradltlonal source Of employlllellt
a

velop-
for mathematically trained graduates. However, the de eil
s W
t of the scientific approach to management in this.a !
. requires the analytical abilities
There is and

as in other countries also

which mathematically trained graduates possessS.

i

who can model a“d a“alyse COlllplicated ma“ageme“t a“d i“dustrlal

problems.
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MATHEMATICAL" EDUCATION

COMPUTERS AND THE MATHEMATICS CURRICULUM

foghan MacAogain

INTRODUCTION

Information teé¢hnology will have a radical and pervasive
effect on educatioﬂi affecting both the aims, content and
teaching and learnéng methods of all subjecté; it will also
affect thexﬁrganisation of education, enabling its wider dis-
persal, both in terms of location and age of pupils., Teaching
and learning methods, assessment and the curriculum are all
bound up together, but here attention will be focused on curr-
icular matters, specifically on the impact of computers on the
mathematics curriculum, concentrating on the senior cycle of

second-level education. Many of the ideas, however, will have

a broader application, and will apply to mathematics education
in general.

COMPUTERS AND MATHEMATICS

Firstly, a few comments on this perennial topic for deb-
Although there are many connections between computers
and mathematics, for example, programming may be regarded as
a branch of logic (see e.q. Murphy [9]), present opinion is
almost unanimous in regarding the linking of mathematics and

computer studies on the curriculum as undesirable.
ple:

~ate.

For exam-
"Their view was unanimous that computer studies should
not be regarded as part of mathematics but should ideally exist

within a separate department." (Cockroft Report [1], par. 397.)

Reasons commonly given are the need for special training in

order to teach computer studies, the need to prevent such a
subject becoming an elitist, and
and the fact that the linking of

ematics inhibits its development

in particular a sexist one,
computer studies with math-

across subject boundaries.
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1 section 1n the math-

uter studies is an optiona

e e as a result, its hours

abus in the senlor cycle;

ematics syll cs allocation, or are tacked on

either come out of the mathemati

hers invol-
to the end of the normal timetable. 0f those teac

chools, mathematics teachers form the

ved with computing in s o

The situation i{s similar in Britain.
‘ ection between computer
That thils is

However, I

largest group.
see that de facto there is a strong conn
nd mathematics in the education system.

is generally recognised.
y bad for mathematics, because the

studies a
pbad for computer studies

11
1jeve that it is equa ‘ .
o f both teachers and pupllsﬁare diverted

The situation should improbe at second level
s as a subject in 1ts

time and resources O
from mathematics. )
with the establishment of computer studie

own right, as seems 1ikely.

CALCULATORS

ich
It is instructive to consider priefly the impact whic

] . The
jculators have had on pupils' jearning of mathematics -
. t objection to the introduction of calculators into .
thelr use would impair pupils
In fact

commones

classroom was that '
e d paper calculations.

encll an
abilities to carry out p v o iyete

the case.
site has proved to be )
R rts in the USA, Hembree and pessart [3] rep

- e e f calculators in con-

ort: "At all grades but Grade 4, a use ©

' : instruct
ditional mathematics

o e ic skills with paper and pencil,

They also

ion apparently imp-

dent's bas
roves the average stu °
" poth in working exercises and in problem solving.d e e
ort that the use of calculators improves a studen
re
: elf-concept in, mathematics.
d in the Leaving Certificate since

The use of
ude.towards, and s

calculators has been allowe

1986,
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COMPUTER EDUCATION IN IRISH SECOND-LEVEL SCHOOLS

The situation as it evolved up to 1983 was described in a
previous article by Moynihan (8j.
then will be briefly described.

Some developments since
Since September 1980 computer
studies has been an optional module in the mathematics syllabus
in the senior cycle, requiring 35 hours of study, but not for-

ming part of the Leaving Certificate. In September 1984 an

optional computer stud}es module was introduced into the juniof
cycle. This program@e is independent of mathematics, requires
about 70 hours of stufly and 1s not examinable. A syllabus
committee forixhis module was set up, and it completed its work
in May 1985. ‘ Both syllabi are available in the Department of
Education's Rules and Programme for Secondary Schools 1986/87.
Since August 1986 the Curriculum and Examinations Board has
taken over responsibility for syllabus committees. At the

time of writing, the Board of Studies for Science, Technology
and Mathematics to the Curriculum and Examinations Board is
still preparing its report. It seems likely that it will rec-
ommend a computer studies module in the junior cycle, indepen-
dent of mathematics, and the establishment of a full senior
cycle subject called either computer studies, or, more generally,

information technology. Some pilot projects are being supp-

orted by the Department of Education: topics include courseware

development and control applications. The spread of infor-

mation technology across subject boundaries has been slow. A
national pollicy on information technology has often been called

for, but is slow in coming. ‘In particular, there seems to be

no commitment to adequate pre-service and in-service teacher
training. However several third-level institutions, including
Trinity College, the Regional Technical College Waterford, and
Thomond College/NIHE Limerick provide postgraduate courses in

computer education for teachers. On the hardware side, the

official commitment to Apple has been maintained, although

Commodores, BBCs and Amstrads are also popular; however, the
days of the 8-bit machine must be numbered.
used include BASIC, COMAL and LOGO.

Languages being
An interesting feature
of the junior cycle syllabus 1s the recommendation of PROLOG as
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a sultable descriptive language.

GENERAL TRENDS IN MATHEMATICS EDUCATION

espread availabllity of microcomp~
difficult to predict,

The effects of tﬁe wid
uters on the mathematics curriculum are

but the following trends can be discerned:

(a} the increased use of numerical methods; where these are

already in use, their earlier introduction, either before,

or at the same time as, analytical methods.
§

{(b) the {ncreased use of graphical.methods, {ncluding dynamic

graphics.
(c) the use of symbolic manipulation systems (for example, to
ebraic manipulation, or differentiation).

carry out alg
but have not up until recently

These systems are not new,
been avallable to teachers.

(d) an increased emphasis on algorithmic thinking, linked to

‘programming, and in particular, on the development, rather

than just the use, of algorithms.

ement of jow-level skills, such as solving a

(e} the displac
by higher~1ével skills, such as inter-

simple equation,
preting and applying the solution.

(£) the possibility of giving a dynamic, as well as a static

view of some mathematical topics.

{g) the use of more realistic numbers in applications of math-

ematics: this should lead to a reduction in the level of

abstractions.
ching of estimation skills: mental arith-

(h) the formal tea
'number sense’.

metic,,approximation and general

(1) an-increased emphasis on problem—solving methods such as

guess and check or successive approximation.
ility of more heuristic learning: the learning

(3} the possib
overy can be facilit-

of mathematics through personal disc
‘ated through the use of 'tool-kits' or "microworlds'.
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These challenge the linear model of learning

k an i“CIeaSEd use of ”lathel(latical ly OdEIIl”g a“d Slmulati
( ) i i
On.

SOME TOPICS AT SENIOR-CYCLE, SECOND-LEVEL

In a previous article Seda " h ad
1] [ ] as iS
v ' cussed some topiCS
whi.(:ll mlght form a baSJ.S fOr the discrete Component in a bett
er

b CUlUlll for lliathelllatics stude“ts. Ma“y o hese
ala“ced Curri f t

tOplCS are also SUltab}e fOI s5enior CVCle Pupils~ some Ca“dld"
ates fOI [¢] s ’ g P Y m em l g
in lu ion wou 1d be ra h theOI N ath atica lO ic,
i ;
Criptlo“ of a““)’algolith“l Option in the A-leUEl exam “atio“
a i ¢

In- i
. analysis, we often have a choice between continuous
n
numerical methods: the basic concepts of analysis, e
; €.9.

rate of
change and area, can be implemented in either discret
e

or COl!tllluOUS wayS. differellce a“d sum, oOr deIantlve a“d illt‘

egral. The discrete con

cepts are simpler, b
" ' , but their impl -
.atlon generally involves much calculation. Calculus ip jTen
ited in the range of functions it can deal with : "
less, it is a powerful and beautiful theory

Neverthe-

S anal"
Y ) 3

:sdiszzijjozoozh:h:umeri?al methods (see Winkelmann [13] for
S sousen o befs topic). Numerical techniques may be in-
e ore, or at the same time as, analytical ones.
erentiation and integration programmes will b
:vaitable to teachers and pupils: less time will need to b:come
aS:zlazzet:chniques O? tricks-of-the-trade, leaving more time
or developing theoretical insight. Graphical tech-

“iques may be used to faCilitate UI)deIStandiIlg Of the CO“CeptS

Much useful «
exists. ul graphics software already

Symbolic Illalllpulatlon systel(IS (e.g. HIUMAIH) Wlll have an

impact on i
the teaching of algebra similar to that of calculat
ators

n t g e P Y
o] he teachl“ Of arlt]lmetlc AlQEbIaiC mani Ulatlons ma now
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pe carried out by machine. The implications of this are that

less importance will attach to the ability to manipulate alg-
ebralc expressions, and more to the ability to formulate them.
This will hopefully lead to a better understanding of their
meaning. Facilities availablerin such systems generally in-
clude manipulation of polynomials, symbolic differentiation
and integration, arbitrary precision arithmetic and simplific-
ation of algebraic expressions. Graphics will be available
in similar programmes in the near future. General data types
are increasingly important: pbesides numbers, other data types,

such as strings, matrices, sets and Boolean variables, should

be encountered. Spreadsheet programmes can facilitate the

introduction of matrix algebra.
are quite useful, although a spreadsheet specially designed
Incidentally, these

The commercial programmes

for mathematics would be an improvement.
programmes have many other uses in mathemétics {see Hsiao (5]
for some examples). Programmes are beiné developed which help
the user to explore algebra: for example, Algebraland, being
developed by the Xerox pPalo Alto Research Center, keeps a record
of the algebraic transformations applied during the solution of
an equation, thus facilitating an examination of the solution
path. The case has been made by several authors that the
teaching of programming facilitates the understanding of many
mathematical concepts, and in particular algebraic concepts

(see e.g. Hart [2]). The concept of variable appears very
early in programming {in most languages). Simple programming
can give pupils concrete examples of the use of variables. Of
course, a variable in programming is not exactly the same as a
variable in mathematics: programming gives a more dynamic,
changing view. Programming may also be used to introduce the
ideas of operation on a variable, and function. Inverse and
composite functions are also met in easily understandable ways;
e.g. in LOGO, LT is the inverse of RT. The concept of function
may also be compared and contrasted with that of procedure.
Procedures commonly take an input, do something with it, and
produce an output. More generally, the writing of programs
involves the use of formal symbols, and of a particular syntax,
and this in itself has analogies with algebra.
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The availability of graphics makes certain areas of geom-
etry, for example transformation geometry and three-dimensional
geometry, much more easily accessible to pupils. The writing
of programmes to produce certain graphic effects also provides
a strong motivation for learning geometry. 'Tool-kits' are
being produced which enable the user to explore some aspect of
mathematics. The most commonly used one at the moment is o
papert’'s Turtle Geometry incorporated in the language LOGO.
Another example is the geometric Supposer (see Schwartz (10]).
This enables the user go experiment with geometric constructions
and hopefully to make,énd test hypotheses. Much work has been l
done on the impact of LOGO on mathematics education: for a dis-
cussion of this, see Hoyles and Noss {4]. Some effects on
geometry are: a pupil's experience of angle may be enlarged;
LOGO provides a procedural description of curves rather than
a static one, opening the question of which curves should be .
emphasised {see Laski (7]); curves may be defined as limits,
or using recursion: either of these techniques is commonly used

when defining a circle in LOGO. Both the display devices and
the programming languages used have their own intrinsic geom-
etries; for example, BASIC generally uses absolute 2D cartesian
co-ordinates, while LOGO uses relative 2D polar co-ordinates
(see Oldknow's essay in the Ware conference report [12] for a
discussion of this point).

CONCLUSION

There are several main effects of the increased availab-
ility of computers on the mathematics curriculum: firstly,
there will be pressure for new topics to be introduced into
the curriculum; secondly, existing topics can be taught and
learnt in new ways: this can change the sequencing of topics,
and, more fundamentally, can challenge the concept of a curric-
ulum topic: the curriculum could follow the trend at primary
level and become more pupil-centred; thirdly, some pressure is
being put on the teaching of mathematics due to the present

lack of adequate teacher training in computer studies.
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CURRICULUM DEVELOPMENT IN SECONDARY SCHOOL MATHEMATICS,

WITH SPECIAL REFERENCE TO GEOMETRY

P.D. Baany

1. There is a substantial amount of published material on
curriculum development in secondary school mathematics, part-
icularly on the "New Mathematics" epoch since about 1950, on
the latter, there is a progression from the objectives and syll-
abi of the pioneers, through the projects and project-evaluat-
ions, on to the text-books, to articles reviewing progress Or

non-progress, and to books. I am certainly no specialist in

this field, and the aim of this article is to provide refer-
ences to what I have encountered {without:any expectation of

completeness), to review briefly aspects Qf the international

scene, and hopefully foster a consideratidn of the Irish exper-

ience in the light of this.

There is a very informative and readable book, Howson,
Keitel and Kilpatrick [19], and surveys in the UNESCO publicat-

ion New trends in mathematics teaching-Vol. III (1972) [42].

These will be my main references, put they and the others listed

here contain a host of others. Other references specific to

mathematical education are Cooper (8], Howaxd,
man [18), and Servails and Vargo {371. The UNESCO:IBE publicat-
on at the second level of education [11]

Farmer and Black-

ion Curriculum innovati

provides a more general background. There are also chapters

on mathematics in general books, e.g. in Tanner [39].

As a background, it would perhaps be well to mention briefly

the variety internationally of the modes of control
[19) deals with this and in particular gives

and innov-

ation in education;
a reference (p. 58) to a grouping of European countries having

similar administration organisations for education and conseq-

uently similar approaches to curriculum development (a first

group being characterised as having little decentralisation but
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some central government movement towards it, a second group

as having little decentralisation but some grassroots movement
towards it, and a third as having considerable decentralisation
but some myth-making about local autonomy). There is also a
reference (p. 78) to a distinction between profuse and confined
systems rather than between centralised and decentralised ones
(a profuse system containing a variety of development and diss-
emination agencies and a confined system containing a limited

number) . /

&
;
H

i

i
H
¢

2. To come now to the objectives of the pioneers of the 'new'
mathematics, we refer to the College Entrance Examination Board:
Commission on Mathematics: Program for College Preparatory
Mathematics (New York, 1959) [6], the OEEC (Paris) publications
New Thinking in School Mathematics (1961) [30) and Synopses for
Modern Secondary School MNathematics (1961) {31), the introduct-
ions to Dieudonné [10] and Choquet {5), and others.

. A common aim was to bring school mathematics more closely
into line with university courses, by introducing topics that
have emerged over the last century or so as being of basic imp-
ortance, e.g. sets, functions, equivalence and order relations,
There was a desire to have clear
?oncepts and proper (instead of pseudo) reasoning. The exist-
ing material would have to be pruned to make room for the new,
and the treatment of 1t should be efficient and informed with
the new spirit.

the laws of algebra, vectors.

Progress was seen to lie not only in having
new syllabi but also in adopting new pedagogical approaches
to the presentation of material.

That much was largely common ground and has been carried
into effect in the reforms in many countries. For comment on
curriculum development strategies, projects, pedagogical app-

roaches, and evaluatlons of these, we refer to [19]

There was a general expectation among the pioneers that

pupils following the new courses would give an improved perfor-
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mance all-round, on the retained material of the old syllabus

as well as on the new. For an analysis of the outcome of

these expectations we refer to {19, Ch. 7} and to Pidgeon [34,
Ch. 7]7. From the pressure due to so much new material, and
perhaps also because it was felt that the clarity of new con-
cepts and the greater power of the new approaches would suffice,
many of the new courses had much less time for and emphasis

on practice at acquiring skills at manipulation, solving of
probiems, and application to other fields. Toc quote Dieu-
donn& [10, p. 12]:

"I have swept away all traditional considerations and all-

owed myself to be guided uniquely by my knowledge of what

immediately follows a secondary education, namely, the

first-year courses in universities (or in the polytech-

ics)." !

1

For reslstance to this trend we refer to Ahlfors et al
[1] and Nevanlinna [29]. Some references have self-explanatory
titles, e.g. Kline {21]) Why Johnny can't add: the failure of
the New Math, Thom [40] 'Modern' mathematics: an educational
and philosophical error, and Vogell [44) The rise and fall of
the 'New Math', There has been continuing controversy over
the decline in skills, and lack of application.

3. Having dealt with what was largely common ground, allowing
for differences in emphasis and detail, we now turn to an area

of great divergence, to wit geometry. Chapter 3 in the UNESCO
survey (42) starts with the follﬁwing:

"The content for geometric study at the secondary school
level has been one of the most ‘controversial issues deb-
ated by mathematicians and educators for more than fifty
years. Many conferences on this subject have led to two
distinguishable positions: one, to preserve a large section
of Euclidean synthetic axiomatic geometry; the other, to
make a completely new approach to the study of space."
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A clear focus to modern controversy on this can be given by

quoting Chogquet [5, p. 131]:

"From the mathematician's point of view, the most elegant,
mature and incisive method of defining a plane {(or space)
is as a two (or three)-dimensional vector Space over R
having an inner product, i.e. a symmetric bilinear from

u.v such that u.u > 0 for all non-zero u."

and p. 14; !
/
"“:we have a 'royal' road based on the concepts of 'vector

space and inner product.'"

The UNESCO survey [42] went on to detail different basic

positions on geometry which we re-summarise as follows.

4(i) The first broad approach we mention is the least integ-
rated. It organises local areas of school mathematics, allows
several approaches to a topic, and for pedagogical reasons
avoids (resists, in fact) placing these in a globally organised

or axiomatised framework.

Examples of this are found in England, with an emphasis
on transformation geometry [see, e.g. 27, 36], and in the Neth-
erlands with a course using axial symmetries as a major build-
ing block [13].

(ii) The second broad approach we mention has as focus a vector
space with inner product, but is divided into three streams.

(a) A first stream envisages an initlal geometrical familiar-
isation stage, with an informal treatment of vectors, plane
transformations and geometrical figures.
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There is then produced a synthetic axiomatic system which
aims at a vector space with inner product as an ultimate goal.
Examples of this are due to Papy [33] and Servais in Belgium.
Choguet {5] and Queysanne, Revuz etc. [35] in France. The
difference between the French and Belgians in this is that the
French axlomatisations assume a knowledge of the real number
system whereas the Belgian approach integrates a build-up of

the real numbers wifh the geometry.

{b) A second stream also envisages an initial informal geom-
etrical familiarisation stage.
vector space with inner product, and the geohetry is extracted
from this. Thus this type of course starts with a vector

Examples are due to pleudonné [10]1, and (26} from the

Axioms are then given for a

space.
Strasbourg area of France.

{c) A third stream is based on a familiarisation with the con-
cept of vector space without any motivation from or reference
to geometry, €.9. from groups, rings, integral domains and
fields of numbers. Then from axioms for a vector space with
inner product, the geometry is built up. For advocacy of this

approach see Glaymann [i161.

This approach (1ii) is the most integrated of the three
"approaches, and makes the most extensive demand for the incl-
usion of abstract algebra. It involves an initial substantial
stage of affine geometry, in which explicitly or implicitly
there is distance along each line in a plane but the units of
distance on the various lines are not co-ordinated so as to
produce distance on the plane. Then at an approprlate stage

the geometry is speclalised to Euclidean geometry.

(1i1) The third broad approach is intermediate between the other

two in point of integration. The geometry is Euclidean from

the start, synthetic and within a global framework that is or
can be axiomatised. This broad approach offers the greatest

continuity with the past.
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One treatment is based on congruence

more or less in the style of Euclid} as completed by Hilbert;
examples of this occur in West Germany and the USA. There

is also a combination of these two in SMSG axioms (22 or 41]
in the USA, and there are axiomatisations based on distance,

e.g. [23) and {15].

Wwithin (ii) and (iii) there is also a division between
courses which contain an axiomatic organisation from the start
of secondary school {age 12), and those which proceed in two
phases, an initial orgénisétion of the experience and spatial
intuition of pupils with local deductions (age 12-15) followed
by a related global axiomatic organisation.

5. The specific geometrical aims of advocates of approach
4(ii) are perhaps most completely expressed by Dieudonne,
although it can be seen that the other courses implement what
is being articulated by him. Arguments based on congruence
and similarity of triangles are to be omitted, and objects such
as triangles and parallelograms are to be referred to as little
as possible; instead, arguments based on linear algebra are to
be used, and an emphasis placed on abstract concepts such as

a geometric transformation regarded as a single entity. The
trigonometry is to be of rotations rather than angles and we
are to avoild [10, p. 11]:

"those unbelievable complications and fallacles surround-
ing such a stralghtforward concept as that of ‘'angle' when
regarded from the traditional point of view."

and further [10, p. 16],

"As for the so-called 'measurement' of angles, it deser-

vedly wallows in the general confusion which reigns in
this sphere."




Approach 4(i) concerns itself with pedagogy as much as
syllabus content, and stresses that pupils should be helped
to discover mathematical facts and development for themselves,
and not have the facts dictated to them. We refer to Freud-

enthal (14, p. 426].

Those who continue to support approach 4(iii) do so on
the basis that to subjugate geometry to linear algebra leads

to an impoverishment of gebmetry. They value the visual as 1

"a helpful rewarding method of reasoning, they are reluctant

for pedagogic reasons to impose extra unnecessary layers of
abstraction on the young, and they value%how mathematics can
arise naturally in the small in geometry, growing from simple
to more complex situations, 'in contrast with having to deal
from the start with a large, abstract, complex system. They
query whether 4(ii) is in fact a 'royal road' to geometry, as
for example the difficult topic of 'angle' is submerged in the
topic of rotations. On this side and ranged mainly against
approach 4(1i) we can refer to Nevanlinna [29]), Thom [40], and
two speakers Osserman [32] and Grunbaum (17] at the Fourth
International Congress on Mathematical Education at Berkeley

in 1980, To quote the latter briefly:

"Disparaging the importance of the Visual, instinctive -
even tactile - aspects of geometry and urging their rep-
lacement by tool-oriented techniques certainly will not
make the future role of geometry any easier. Such an
attitude 1is inherently as absurd as the promotion of sound-

less music, or verbal rendering of paintings."

6. Bell (3] gives an idea of the amount of retraining of

teachers necessary for a type 4(ii) approach; he says that in

France teachers attended in-service training for one afternoon

a week for a whole year.'
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7. What has been described applies to secondary schools.

There is another stand which perhaps should be mentioned, al-
The educat-

ional psychologist Jean Piaget has conducted a major series

though it appertains mainly to primary schools.

of experiments on how children learn mathematics and in part-
icular what they are or are not able to assimilate at a given
age. This has profound implications fof the content and seq-
An introduct-
There is also

uence of mathematical topics in primary school.
ion to Piaget's work is given in Copeland (9].
reference to Piaget's work in (18].

[
i
/

{
As recounted in Copeland (9, p.7]:

"The Bourbaki group of mathematicians attempted to isolate
the fundamental structures of all mathematics. They est-
ablished three mother structures: an algebraic structure
(the prototype of which is the notion of a group), a str-
ucture of ordering, and a topological structure. These

were later modified to include the notion of categories.'

At a meeting of mathematicians and psychologists in Paris,
Piaget and Dieudonné on listening to each other found that
there was a direct link between these basic mathematical
structures and Piaget's three structures of children's

operational thinking."

So if you encountér, on p. 3 of [19] a calm mention of
the possibility of introducing category theory at primary
school, this is the likely source.

8. Thus internationally there is great diversity in the treat-
ment of geometry, with continuing controversy. In France and
Belgium vector spaces predominate; in the Netherlands and Eng-
land there is localisation, with an emphasis on transformation;
congruence is a continuing component in West Germany; for the
USSR we refer to [24]. The USA, the original home of the 'new'

mathematics, is a country of great diversity. For one sombre
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analysis considexr Allen (2] in 1984:

"Now, our mathematics programs, for all except the very
best students, present algebra without structure, geometry
without proof, and, worst of all, instruction that, some
believe, has 'no established or widely accepted set of
goals.'" ‘

A look at the specilal issue on geometry of the Mathematics
Teacher [25] in September 1985 shows no evidence of any geom-
etrical approach other than one based on congruence,

Servais and Varga {37) gave syllabi for eight countries.
Cooper {8] refers in great detail to Great Britain.

i

9. Turning now to the Irish scene, I‘have not encountered

much published material. Perhaps it would be well to refer

to a general work, Mulcahy (28}, and to the fact that the Irish-

Association for Curriculum Development has published a bi-annual

journal Compass [7] since 1972,

In the present syllabhs for the Intermediate Certificate,
which has been current for a generation, we can see the intro-
duction of the mathematical topics which we referred to in
I do not
wish to publish at this stage a detailed analysis of its geom-
etrical content, which to put it mildly is inadequate. Briefly
it has emphasised transformations, but the appearance of a

Section 2 as being common ground internationally.

vector-space focus as in 4(ii) 1is misleading, as it 1s only

a veneer; basically the course never departed from proofs by
congruence, although it has trophies from. other courses, such
as equipollence from Papy and angle-measure from Birkhoff,

In the new syllabus, announced on 25 September 1986 and

to be first examined in 1990, a traditional treatment of geom-

etry, based on congruence, is being reverted to.
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is a known function, 0 is a diffusion

BOOK REVIEWS

where for each 0, s(0;.,.)
\ ) is the Wiener process and again 8 is the par-

coefficient, W(.
The dlfferentlials above are defined

"PARAMETER ESTIMATION FOR STOCHASTIC PROCESSES® r to be estimated.

amete
with respect to the Ito integral.

cervations on a Poisson process {x(t)
ity function S(®;.) where, for each 6, s(9;.) is a known fun-
The three chap-

Chapter Four considers ob-
By Yu A. Kutoyants £ 0 5t sT) with inten-

Published by Heldeamann Vealag, Berlin, 1984, viii + 206 pp.

o ¢ ction of t and it is required to estimate 6.
DM 56. ISBN 3-88538-206-7.

ters are similarly organised beginning with the appropriate
generalisations of the Cramer -Rao lower bound and Hajek's

This book is a translation by B.L.S. Prakasa Rao of a com- ‘heorem and continuing on Eo investigate the consistency, eff-

pletely revised and extended version of a former book of Kuto-

7 iciency and asymptotic mean squared error of the maximum like-
It has 200 pages divided into

yants, published in Russian. Given certain smoothness

1ihood and Bayesiaﬂ estimates of 0.

five chapters.

Chapter One consists of a quick review of the theory of
parameter estimation when the data consisé of independent obser-
vations, It briefly describes maximum 1fkelihood estimation,
Bayesian estimation, the Cramer-Rao lower bound on the mean

squared error of an estimator and the less widely known theorem

of Hajek eétablishing the asymptotic minimax lower bound for

the risk of an estimator. The treatment here i1s discursive

and clearly assumes a good degree of prior knowledge on the part
of the reader.

Chapters Two through Four deal with three different sit-
uations where dependent ‘observations arise and where the obser-
vations themselves consist of the values of a random function
observed at all time points in an interval [0,T]. Chapter Two

considers observations of the form

X(t) = S(6,t) + n(k), 0 st s T

where for each 8, S{6,.) is a known function of t, (n{t) : stsT)
1s a gaussian process with mean zero and known covariance function
and 0 is the parameter to'be estimated. Chapter Three considers

observations on a diffusion process

dx(t)

S(8;t,X)dt + gdw(t)
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conditions on the function S it is shown that both the maximum
11kelihood estimate and the Bayes estimate are asymptotically
efficient. However in the absence of these smoothness condit-
{ons the maximum likelihood estimate and the Bayes estimate have
éifferent limiting properties and the Bayes estimate is the

only asymptotically efficient estimate, This makes for an int-
efesting divergence from the asymptotic equivalence of maximum
iikelihood and Bayes estimates monotonously encountered when
dealing with independent and identically distributed observat-
ibns. Examples are given of the applications of these results
Eo situations that arise in signal processing and communications

theory.

Chapter Five gathers together several general theorems
likelihood ratio-theorems that have
This 1s done

on the properties of the
been used earlier in the proofs of Chapters 2-4.

since many of the proofs are identical or analogous for each

of the observation types considered.
I am unable to judge the usefulness of this book from the

point of view of an expert in this area. However, for someone
familiar with.estimation hased on independent observations, it
offers a clear insight into the difficulties involved in exten-
ding some of the results to the case of dependent observations.

Perhaps unavoidably, the notation is complex, the proofs are
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difficult and in many cases draw on obscure {to me at any rate)

_ results in functional analysis. Bedside reading it is NOT!

Don Baany,
Statistics Depantment,
ucc.

"PARTIAL DIFFERENTIAL EQUATIONS FOR SCIENTESTS AND ENGINEERS™

By G, Siephenson

Published by the Longman Group Lid, 1984, x + 161 pp.
ISBN 0-582-44696-1,

i

Dr Stephenson, who is the author of several textbooks
on mathematics, has written a compact and eminently readable
account of partial differential equations at an elementary
level. The book itself 1s intended for scientists and engin-
eers, and the inclusion of the last name in the title is evid-

ence of the increasing sophistication of the mathematical tech-
niques required of the engineer nowadays.

By normal standards Dr Stephenson's book is small, yet

he has succeeded in including a large amount G6f useful infor-

mation within its 160 pages. He concentrates mainly upon the

so-called equations of mathematical physics, e.g. Laplace's

equation, the wave équation, the heat conduction equation and-

Schrodinger's equation. Occasionally functions involving more

than two independent variables are considered, In discussing

boundary value problems the author inserts a short section on
ill-posed problems.

The book commences with a classification of the second

order partial differential equations. Then orthonormal funct-
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ions are introduced, with a brief but welcome reference to com-
'pleteness, after which the author moves on to the question of
the separation of variables, which could probably be described
‘as the heart of the book. Numerous well-chosen examples of
‘this useful technique are included, while at the same time the
reader is introduced to the notion of discrete eigenvalues and
eigenfunctions. Sturm-Liouville theory is mentioned, admitt-
edly only briefly, but some substantial results are obtained.
Solving Laplace's equatiop in three dimensions in non-rectang-
ﬁlér coordinates gives r%%e naturally to the so-called special
functions, but, as the aﬁthor is careful to state in his pref-
ace, little spac%jis deﬁoted to them and any of their properties
which are used afe stated without proof. There is also a short

but useful chapter on continuous eigenvalues and Fourier integ-

rals.

In a book of this size a chapter on the Laplace transform
might be regarded as a luxury, but the author's decision to
include one is undoubtedly justified. There are many excell-
ent examples of the application on the Laplace transform, and
indeed of the Fourier transform, to boundary value problems
involving partial differential equations. There is also an
introduction to the Green's function, the Heaviside step fun-
ction and the delta function.

It is hardly possible nowadays to write a textbook on
partial differential equations without some reference to num-
erical methods and the tremendous impetus given to these methods
by the recent explosion in computer technology. One can only
agree wholeheartedly with the author's own cogent observation
that results which are spurious may be accepted és correct just
because they come out of a computer., Perhaps from a desire
to combat this dangerous tendency, the author devotes his last

chapter to a brief exposition, mostly by way of examples, of

- the finite difference and the finite element methods. The

Rayleigh-Ritz idea, which relies heavily upon the calculus of
variations, is used to illustrate the finite element approach.
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Every chapter 15 followed by a set of problems and ans-
wers to all the problems'are provided. The book 1s remarkably
devold of misprints, in fact the only nontrivial one I encoun-
tered occurs in the second of Problems 5, page 77, which deals
with the generating function for Jn(x). I feel that the aut-
hor has succeeded admirably in his intention of producing an
elementary text which is accessible to any undergraduate stud-
ent yith fairly basic mathematical education and I should have

no hesitation in using this book should the occasion arise.

Geoage V. Kelly, [
Depaniment of Mathemailical Physicas,
Univensity College Conk,

"POLYHEDRAL COMBINATORICS AND THE ACYCLIC SUBDIGRAPH PROBLEM"
By M1, Jungea (Research and Exposition in Mathematlcs 7f

Published by Heldeamann Veatlag, Berlin, 1985.
DM 36.  ISBN 3-88538-207-5.

X + 128 pp.

Combinatorial optimisation [1,2] is the branch of math-

" ematics which tackles such problems as the travelling salesman
problem, shortest path problems, matching problems and network
flow problems. More specifically, if S is a non-empty finite
set and f 1s a real-valued function on the subsets of S then
combinatorial optimisation refers to the problem of maximising

Since § is finite the

most obvious way of solving such a problem is to list all the

values of f in gquestion and to pick the largest one. This
method 1s too naive to be of much practical use.

f on a given collection of subsets.

Instead,

such problems are solved by developing algorithms for finding
the required solution. Combinatorial optimisation is a child.
Not only are computers used to find the
solutions, but a number of the problems in the field have arisen
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of the computer age.

in research in computer design and the theory of computation.

There are many 'real-world” problems which can be solved by
applying the techniques of combinatorial optimisation. (With
regard to applicatlons of optimisation techniques in the real
world it 1s a salutory exercise to read the case studies in[3],
e.g. "the celebrated brand X washing machine shipping catas-
trophe'", which show how careful one must be in making decisions
based on a mathematicgl model.)

/

The monograph w%der review discusses the following com-
binatorial optimisaéion problem: given a directed graph D with
an integer "ﬁ;ight" on each arc, determine an acyclic subdi-
graph of maximum weight. An equivalent version of this Acyclic
Subdigraph Problem (ASP) is the Triangulation Problem: find a
simultaneous permutation of the rows and columns of a non-
negative square matrix such that the sum of the entries above
the diagonal of the permuted matrix is maximum. The Triang-

ulation Problem has an application in economics.

Each subset B of the
arcs has a 0-1 n-dimensional incidence vector Xg associated
with it. The acyclic subdigraph polytope PAC(D) is the con-
vex hull of all Xp

D. The ASP may then be formulated as the integer programming

Let the digraph D have n arcs.

, where B runs over all acyclic arc sets in

problem: maximise ctx subject to x ¢ pAC(D)’ given the non-
negative vector c ¢ 2", The ASP is an example of an NP-hard
problem (see [4]) and the ildea of assoclating a polytope with
the feasible set of such a problem and then of applying linear
programming technigues, has become popular in recent times.

It turns out to be crucial to determine the facets ((n-1)-
dimensional faces) of the pblytope, and the central achievement
of this monograph is the determination of several classes of

facets of PAC(D). The author expresses the confident hope

that "the algorithmic exploitation of our results will in fact

lead to the effective solution of large instances of real-world
problems which can be formulated as an Acyclic Subdigraph Prob-

lem",
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The book is well organized and well written and, as well
as dealing with the ASP, it gives an excellent survey of poly-
hedral combinatorics, although the reader may wish to fill in
the background by consulting some of the references below.

The theory of the book, due to Grotschel, Junger and Reinelt,
was awarded the IBM Computer Application Prize for 1984.
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"MATHEMATICAL FORMULAE" (Fourth Edition)
By §. Baanett and 7.0, Caonin

Published by Longman, Essex, 1986. 77 pp. Stg £3.95,
ISBN 0-582-44758-5

/
A reference work Providing a compact collection of math-
ematical formul?e desfgned specifically for engineering and
science students at university or college. For this fourth
edition the authors have added new sections covering such top-
ics as z-transforms, orthogonal polynomials and Walsh functions;
other additions include further properties of matrices and a
useful list of symbols and notation. The tables of logarithms

have been replaced by frequently used statistical tables.

"ON THE EXISTENCE OF NATURAL NON-TOPOLOGICAL, FUZZY TOPOLOGICAL
SPACES”

By R. Lowen

Published by Heldeamann Venlag, Beflin, 1985. xvi + 183 pp.

‘DM 34.00  ISBN 3-88538-211-3

This monograph presents a unified study of several impor-
tant examples of natural fuzzy topological spaces; the space
of probability measures on a separable metrizable topological
space, the space of Radon probability measures on a linearly
ordered topological space, and the hyperspace of uppersemicont-
inuous fuzzy sets on a uniform space.

It is shown how these spaces can be canonically equipped
with non-topological fuzzy topologies, and in each case the
richness of information contained in these fuzzy structures
when compared to classical structures is demonstrated.
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A first chapter is provided which contains sufficient
concepts from abstract fuzzy topology to make the book self-
contained.

"ABELIAN VARIETIES" (Second Edition)
By D. flumfonad

Published by OxfZoad Univeasity Press, India, 1986, vii + 279
PP Stg £7.50. ISBN 0-19-560528-4. H

This book is a systematic account of the basic results
about abelian varieties. It includes an éexposition, on the
one hand, of the analytic methods and resulis applicable when
the ground field k is the complex field C agd, on the other
hand, of the scheme-theoretic methods and results used to deal
with inseparable isogenies when the ground field k has char-
acteristic p.

The revised second edition contains, in addition, appen-
dices on "The Theorem of Tate" and the "Mordell-Weil Theorem".
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PROBLEM PAGE

First item this time is one of those intriguing problems
which is often solved more easily by non-mathematicians! I

heard it from Richard Bumby who traces it back to John Conway.

1. ".Find the next egtry in the following sequence:
i
1, 11, é1, 1211, 111221, 312211, ... .
I

7 .
y
Here is another problem with a simple solution which is

not so simple to discover.

2. Find an infinite family of pairs of distinct integers m,n

such that:

m,n have the same prime factors, and

m-1, n-1 have the same prime factors.

Now for the solutlions to some earlier problems, from

March 1986.

1. How long is the recurring block of digits in (0.603)2?

1 first heard this problem from David Fowler, who uses
it as an example to show that simple arithmetic can be surpris-

ingly tricky.

Many people's first guess at the answer 1s 6 diglts or
9 digits, but in fact the recurring ' block has 2997 digitsl

To be precise:

(0.60i)2 = 0.000001002 ... 996997999,

In case you think that there is a misprint here, the string
998 1s indeed absent.
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Once the pattern in this recurring block has been notic%
it 1s not harxd to show that .

1

(0.60 ces 0‘;)z =
M (10°-1)?

n

i
has a recurring block of n{10"-1) digits. To verify that t&

|
decimal expansion has the form |

. B
n n n

B4

5 (0,00 ... 01)% = 0.00 ... 000 ... 1 ... 99 ... 9 |
00 ... 01 It W
|

¥

with the string 99 ... 8 missing, one can apply the identity

10" (m(10™-1) + 1) m'+L(m+1)(1o“~1) + 1

(10"-1)?2 ) (10"

withm = 0,1, ..., 10™-2, in the long division 1/(10"-1)%,

2. Prove that at least one of the numbers
T+ e, Tue

is transcendental.

Thanks to Des MacHale for supplying this problem and it
solution, '

We use the facts that if x and y are both algebraic num- |
bers then so are x*y and xy (see Herstein's Toplcs in Algebraé

page 172), and also /|x|. Thus if both 7 + e and me are alg-
ebraic we deduce that

7 o= I({n+e)? - 4né)* + (m+e))

is algebralc, which is clearly false.

The argument clearly holds for any pair of transcendental

T
numbers o, and Des points out that there are generalisations
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involbing the symmetric functilons.

to more than two numbers,

3. Suppose that a, 2 0, forn=1,2;, «c. & How large can

3 n (*)
"Tajtazt ... 8
gad1+a2 n

n=1

be? !
;(’
Tom Carroll /(a postgraduate at the OU) recently encount-

ered a series ofgthis form while constructing a certain sub-

harmonic ‘Ffunction.

In fact the series is convergent with sum less than 1.
One can see this by noting that
an
an e -1
Q21%azt ee- +ap s Qa1 t Azt .o +ap

1 - ! +ap |
= gaitart ... +anp-1 gd1¥azt c.n n

since e® 2 14x. Thus, by telescoping cancellation, the nth

partial sum of {*) is at most

1
T Ta,tast ... tap
PLIRLY!

To see that the number 1 is best possible here, consider

(=]
{ —_ = ’ a> 0,
ena ea -1
n=1
and notice that ’
a_ = 1.
lim 5

a+0 e° -1

Phil Rippon, Open Univensily, Mifion Keynes
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IRISH MATHEMATICAL SOCIETY BULLETIN

CONSOLIDATED INDEX OF ARTICLES.

The index in the following pages lists all the articles
which have appeared in the IMS Bulletin (formerly IMS News-

letter) since its inception in 1978, apart from Issue 1 of
which we were unable to obtain a copy.

The articles are grouped into three sections: General
Articles; Mathematical Education; History of Mathematics, and
are listed alphabetically by author name.
icles are listed under each of the authors'

Co-authored art-

names,

The locatlon of articles is indicated by the standard
format used in the Bulletin for listing references; thus

4 (1981) 28-38 refers to an article to be found on pages 28 to
38 of Issue 4, 1981
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