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INTRODUCTION

The object of this paper is to give a brief survey of ap

area of Abelian group theory in which remarkable progress has

been made in recent years. R second objective is to indicaty

how results and techniques from logic are gradually becoming
important in this area of algebra;

a point to which we shall
return later.

Throughout the paper all groups shall be additively
wr i Lban Abal fan yroups and rings sholl by uniLal, associollve
rings.

A QUICK COURSE IN ABELIAN GROUP THEORY

The following concepts will be needed from Abe

lian group
theory:

1. A group G is said to be reduced if G does not contain a

subgroup isomorphic to the additive group of rationals,

» or the Prufer quasi-cyclic group 2(p”) for any prime p
[This latter group is the additively written version of
the (multiplicative) group of p th complex roots of unity
with n running over all integers 2z 0]

An element g of a group G is-said to-be a torsion element

if ng = 0, the identity of G, for some integer n # 0. If

no such integer n exists then g is a torsion-free element,
The torsion elements form a subgroup tG of g and the
quotient G/tG is a torsion-free group,

A group F is said-to be free if it has the form F
where X, =
i

ierI.

= C)Xi

Z, the additive group of integers, for all
(These are precisely the projectives in the category of
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Abelian groups.)

= hisms
endomorphisms of a group G (= homomorp

= o e 1 the endomorphism ring of

from G to G) form a ring E(G),

) =
if we set (o1 + b2)(g) = 01(g) + $,(g) and b102(g
G, 1

®,(d2(g)) for endomorphisms ¢, and ¢a-.
1

9
If 5 1is a ot (5 1} sub u G, where N uns
g P e the ubgro ps I P& throu

all no -ZEXO/lHtEQBIS, orm a base 0 neig bour oods © 0
/

i the
f 1 on G. This topology is called
for a lineaf topology
7-adic or natural topology-. e i .
1 i dorff precise ‘
e fAaecntd of Haui pnG are chosen then the resulting
ps of the form

If G is torsion-free then

If subgrou
topology is the p-adic topology.

6. e co n 1 - i i the group
mpletio a] 71 its P adic tODDlOgY 1s

ded
f J_ can be regar
J of p-adic integers. Elemenﬁs o b

2
i + S,P
infinite series s, + 5P
s formal infini e
: We note that Jp can als

(Fur-

+ ... where

0,1, «..5 P=1). ; ' :
Sie oy that it has cardinality 2%

i d
ring structure an e Tolh.

ther details may be found in, €.9.

T A group G is 1nde(:omposable 1 it ca ot be written 1in the

forr G = A B for on=-Zero QIDUDS A and B Note that
@ L
1 = @ B the E( ) has ldEmDOtE tS, V1iZ. he project-

ions.

THE REALIZATION PROBLEM.

he basic IEallZaLl( pIDtllEH ca be stated as ollows:

G T g 9 c 1 ill su a
iven a N A what d .0Nns on A w en re th £

2 s "
i = rings.
there is an:Abelian group G with E(G) A qua

The basi obl . b S =
c Pr ble can be odi ied (a d ade arder ) y 1 1ls

bed class of groups.

i i to A.L.S. Cor-
The fundamental result in this area is due

ner [1] in 1963. : '
of how mathematics should be written!)

(The original paper is a beautiful example
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Corner's Theorem.

If A is a countable, reduced torsion-freg

ring then there exists a countable, reduced torsion-free gro,
G with E(G) = A.

(We remark that properties such as reduced etc. attributed to

a ring mean that the underlying group of the ring has the saj
properties., )

I shall not attempt to give any proofrbut merely indicate tha

all three conditions are necessary. Consider the following

rings: (i) 0 ® 0, (ii) Z(p) @ Z(p) (Z(p) is the field of P

elements), (iii) Jp C)Jp. Each of these rings satisfies two

but not the third of the conditions on the ring A in the abaoy

theorem. - However in case (i) if E(F) = 0 @ 0 then G would b

a vector space over (), If dim G = n then we would need n?=2

which is impossible. N slmilar vector space argument shous

that (ii) is impossible. Finally if E(G) = Jp(j Jp then G i

naturally a p-adic module and it will have finite rank. How

ever it is known that a finite rank p-adic module which is re
uced (in this case 0 must be replaced in the definition by th

field of p-adic numbers) is free and this again leads after a
little argument to solving n? = 2

. So (iii) is also imposs-
ible.

A non-algebraist might reasonably ask why the above resu

is important. (I'm assuming the question comes in the conte)

of pure mathematics and is not related to applicatiaons!) One

answer is that the result can be used to construct some amazir

examples of groups. These groups show that it is practically

impossible to derive any analogue of Krull-Schmidt decompos-

ition theory. We content ourselves with three examples which

can be produced using Corner's result.

Example 1. There is an indecomposable group of infinite rank.

Take A = Z[t], the integral polynomials in the variable t

and apply Corner's result. If E(6) = A then G is indecompos-

able since A has no idempotents.

untable
There 1is a superdecomposable group of co
Example 2.
rank | t
o non-zero indecomposable direc

(i.e. a group which has n

summend.)

= . Let
(», | req rz0}and define A A = )‘maX(r,a) .
ht? t can be shown
4 ZA th; semigroup ring I =
e i p is freely generated by e AL
Hence

of N over Z. P

an

L

; f

the underlying group od't. ns of Corner's Theorem.
s : the/conditio

so A satisfies f

i tion
G &ith E(G) = A, However a little calcula.l
B it . dempotent in A then there 1s

Le : ~zero i
shows that/if € is any non=z But nouw

an = = = € [
on-zero ide poteu t g suc tt at & EC T #

g £ GC = B @ C the B = E(G) or some idempote t €. .

; . . i
= (G) i then _a summe d o G a d Q(G) 1s cofr tai ed » B

D C 1s s

s as B=0®E,
_ G). Thus B decompose
since C(G) = egl

However

some E.

i A such
There is a countable torsion-free group

le 3.
. chacA:A@A@AbutA#A@A.

. (i=0
semigroup with 1 generated by 05 01 ( ,

Tyie, 4. to bs khe Let R = ZA, the integral semi-

. to 0.0, = 841 , ,
L ?id;ntifjing the 0 of the semigroup with the

group ring of A If I denotes the

0 of A) Again R is free as @ Qroup.

then
= - - O1py - 9202
arated by T = 1 OoPa

princlpnl ideal genera S U1 and

R/1 is still freely generabed as a ?ruup. iy I
Corner's Theorem to exhibit G with E(G) = A.
use

P u {[4, Vol.
G \.\Jlll ave the dESlrEd pro erties. (SEE chs o} 2,

g1.6] for more details.)
i ical rings
Corner extended his theorem by using topologica .
-Qroups
d he also produced a similar type of result for p ? -
- 0 -
% I worked on the realization problem for p-adic

e duced a weak realization theorem

d pro .
modules (1974) an : "
i Apart from some modifications and slight extensi

o Corner's eore (arlSl 9 al ly ro DISattl and 1s sC ool

1 Padova th wa the state ©O the HEGllZatlD Proble b
) 1s S

1974.

there.




ENTER SHELAH

In late 1973 the situation changed dramatically. Sahg
Shelah applied techniques from model theory and logic to a n
ber of problems in Abelian group theory [S] and produced san
astonishing results. The most celebrated of these does not
relate directly to the realization problem but is nonetheles
important to our survey of this problem. I refer of course
to his unexpected solution of the Whitehead Problem. This
problem, which has its origins in topology, can be phrased a

follouws:

"If A is a torsion-free Abelian group with the property

that every extension of 7 by A splits, must A be free

In olher words if G iy u group and G/72 = p Implies 6 =« n @ 1,
must A be isomorphic to @ 77 Shelah's surprising answer is

that the problem is undecidable in ordinary set theory!

To see what this means we must now make a small incursi
into set theory. The most commonly used set theory consist:s
of the axioms of Zermela-Fraenkel. Ve do not need to con-
sider these axioms individually; suffice it to say that they

cover "naive set theory". If we include the Axiom of Choice
then we have the basic everyday set theory which we denote by
ZFC. To understand Shelah's answer to the Whitehead problen

we need two additional axioms.

Godel's Axiom. If we let Vg, = @, v, = (@), Vo, = P(Vy) ...

and in general Va+1 = P(Ua) (with Vs =agga for a limit ordinas
o) then we have the universe of sets \ = Uy (where a runs th
Alternatively if X is a set, let DefX

be the family of all subsets of X of the form {a e X l P(a)}
where P(a) is any property of sets expressed in the predicate
Now let Ly = ¢ , La+x = DeF(La) (with Lo =ag%a fo
a limit ordinal o) and set L = ULa (where a rtuns through all
ordinals),

ough all ordinals),

calculus.

L is the universe of constructible sets and in
general is thought of as a "smaller" universe than V. (See
Fig. 1).
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Godel's axiom is that V = L.

This axiom arose originally in discussions

in's Axiom. :
i Before stating the axioms we need to

of the Souslin problem. ; -
recall some definitions relating to partially ordered sets

Definitions

' ' Jwn the elemonta
(1) Ir (P,s) ts o particlly ovdorad sol Lhon the

p,q of P are compatible if there is vt e P uwith p 21,
’

qQ S T.

(ii) A subset of P is compatible if every pair of elements

is compatible.
i e
(iii) A subset D of P is dense in P if for all p € P, ther
is a de D with p s d.

(iv) A partially ordered set (P,g) satisfies the countable

i i is
condition if every pairwise incompatible subset of P i

countable.




w'i

We can now state Martin's axiom (MA):

Suppose (P,s) is a partially ordered set satisfying the cou

able chain condition. If {Di] (i€ 1I) is a family of densg

subsets of P with |I| < 2R°. then there is a compatible sub-
set G such that G N Di £ 0 for all i e I.

An observant naive set theorist will notice that MA follous
from the continuum hypothesis (CH). However it has also bg
shown that (ZFC + MA + negation of CH) is consistent. (By
consistent we mean that if ZFC is free from contradictions tl
so also is the above.) Indeed it is also known that ZFC +

(v=L) is consistent.

Sholah's wnuvwor Lo Lhe Whitehoud problom was Lhis: In
(ZFC + MA + negation of CH) there is a group A (of cardinall

¥;) which satisfies the conditions of Whitehead's problem buy
A is not free.

The outcome is, of course, that for naive set theorists
the problem is undecidable! This of course was a considerat
shock to most people working in Abelian groups. (See Eklof

[3] for a very readable discussion of this area.)

RECENT DEVELOPMENTS

While the Whitehead Problem is of no direct importance
for the Realization Problem, the techniques developed by Shel
in his 1974 paper (and subsequently extended by him) have bec
ome the major tool for tackling the problem. The following
results indicate some of the many recent advances made:

1. (zFC + (v=L)).

phism ring.

Every cotorsion-free ring is an endomor
(Dugas and Gobel, 1981).

(A group is cotorsion-free if it is torsion-free, reduce

and contains no copy of Jp, for any p.)

(ZFE) If A is any algebra over a complete discrete
2. .

. . -
Ualuatlol ring 3 the .
A its "esse ial" endo orp is ring (DUgaSy Gobel and

as £

n there exists a R-module G having

Goldsmith, 1982).

(zFc) Every cotorsion-free algebra is an endomorphism

algebra (Dugas and Gobel, 1982).
The state of H%e art for the Realization Problem (in 1984)
E / ® 0 .
h been very elegéntly presented in a unified approach by
as )

and Gobel [2]. Their results are based on a combinat-
Corner

n S
i al techiique dEUiSEd by Shelah. I Very recent work, Duga
10

d Gobel and Gobel and Goldsmith have established (in V = L)
an

that most realizations can be obtained in classes of groups

. -
hich are almost free (in the sense that all subgroups of card
whi - .
inality less than the cardinal of the realizing group are free)
ina

Some of the results so obtained are undecidable in ZFC.

CONCLUDING REMARKS

One of the principal objectives in writing this paper is to
convince non-logicians that set and model theory will have a

role in our subjects once uwe deal with any uncountable struct-

i 1
ure (since IR is uncountable that takes in most of us!)
This Lmpacl ls porhops motl, apparont In fbold Lan group thoory
but the reason for this is clear - finite Abelian groups are

completely classified being direct sums of cyclic groups.
However other areas of algebra, topology and analysis will

slowly but surely become involved also.
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