VISCOELASTIC BOUNDARY VALUE PROBLEMS
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1. INTRODUCTION

Li . 3
lnear viscoelastic materials are described by the hereg
e

itar i i i
y constitutive relations (repeated suffix notation under

stood)
t
oij(g,t) = 2J dt'u(t-t')eij(g,t')
. Joo
+ I dt'A(t-t')ekk(E,t'), iyjo=1,2,3 (1.1)

-00

in terms of the stress
and strain t
ensors Gij’ Eij at positio

r = X -
- ( ya2) = (Xlrxz,xa) and time t, and the singular visc
o-

elasti i
ic functions p(t) and A(t), both zero for negative time

5 .
n order to incorporate Causality. These are related to th
[s} e

relaxatio i
: n functions for shear and volume deformati
particular o "

n(t) = S(6(L)H(L)) (1.2)

where H(t) is the Heaviside

step functi .
relaxation function, ion and G(t) is the she

approximated perhaps by a constant plus

exponenti
ial decay terms. If one exponential is sufficient
’

. . . .
the aterial is referred to as a standard 1i ear solid A
.

similar relatio exists
between (Zu(t) + 3)\(t 3 and he bulk
Ielaxatlon functio . 1is latter qualtlty nay be taken t b
[s) €

a constant, or alternatively, proportional to G(t)

materials. » for many

Equation (1.1) is combi

\ : b ; .
equations mbined with the dynamical
82

O s L
lJ,J(E;t) + atzui(g,t) = 0, i=1,2,3 (1.3)

where U.(r,t) are the dlsplace ents. It is sometimes pOSSlbl

to EglECt the acceleratio ter 1r 1.3). 1s non-inertial
( )

approxi atior will be adopted enceforth. I a bﬂdy Ooccupyl
Y
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volume V with boundary B,

the boundary conditions may for

example take the form

Ui(f_st) = di(E’t)’ L e Bu(t)
oij(g,t)nj(g) = c;(zst)y L€ B, (t) (1.4)
f Bu(t)UBo(t) = B

(L,t) are specified functions. On taking

the hereditary integrals
) and (1.3) reduce to

where ci(g,t) and;’di
the time Fourier transform of (1.1),

become products and in fact both (1.1

the elastic form with Lamé's constants replaced by the so-

called compléx moduli. If the boundary regions B and By

this observation allows one to reduce any prob-
This is the con-

are constant,
lem to the corresponding one in Elasticity.

tent of the Classical Correspondence Principle.

Many interesting problems are however not in this cat-

egory, for example those involving loads moving over a half-

or the Normal Contact Problem where the load is stat-

space;
gnitude; and also extending or closing

ionary but varying in ma
crack problems. The basic complication is the following: if

a displacement, for example,
it Ls known ab all provious tlmes, so an hoered-

is known at time t on Bu’ it does

not follow that
ftary integral over Lhis quuntity is nol ne
pn exception to this would be if Bu is non-increasing with
at time t, it was in it at

cossarlly kKnown.

time, since if a point is in BU

all previous times. Elaborations on this observation allouw
certain extensions of the Classical Correspondence Principle

(Graham [1) and references therein).

There are many problems however where the boundary regions
vary in quite a complicated manner, for example exhibiting
A method for tackling such

tion of hereditary

consecutive maxima and minima.
problems, involving a certain decomposi
integrals, was developed a long time ago by Graham [2] and

Ting [3]. The main point of the present note is to give an
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alternative derivation of this decomposition, recently evoly

and applied by Cecil Graham and myself, and to give a simple

illustration of its use. This derivation leads to a form

which appears to be easier to manipulate in certain contexts

2. DECOMPOSITION OF HEREDITARY INTEGRALS

Let the two functions u(t) and v(t) be related by

v(t) = j dt'e(t-t")u(t)
. (2.1)
u(t) = J dt'k(t-t')u(t")
where k(L) ond 4(L), bolh zoro for negolive t, are lnversos
of each other in the sense that
t t
[ dt'e(t-t")k(t') = I dt'k(t-t')a(tr) = 6(t) (2.2)
0 0
in terms of the singular delta function §(t). Let 6(t) be

the set of the present and all past times (-m,t], which we
decompose into two sets Wu(t), wv(t) where u(t') is given for
t! e wu(t) and v(t') is given for t'e¢ mv(t). In certain
applications v(t') may not be known on wv(t) but can be use-
fully represented. If we could decompose v(t), for example,
as follouws

v(e) = [t (e, enuen) + [[atrm eenuien (2.3
Wy (t) wy,(t)

then everything on the right-hand side is known, provided that
the sets wu(t) and wv(t) can be specified, so that v(t) is
given explicitly. R decomposition of this kind can be derive
in the following manner. We first define the sets wu(t) and
wv(t). Let t;,t,,t3,... be the sequence of transition times
earlier than t, marking when t! changés from wu(t) to wv(t)

or vice-versa., We take it that [tl,t] € wu(t) since other-
wise t € Uv(t) and v(t) is known to begin with.
write v(t) as

Let us
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t1
‘ ! ! gre(t-t )ult")
v(t) = L:dt'ﬁ(t ~t)ul(t') + Lm? ; ‘ -
1 t [
= Jtdt‘l(t—t')u(t') + J Bt'Tl(t,t')v(t )
tl -
t
o Telbst? ) = { et (b-t™)k(t"-t") (2.5)
t'

!

. . 1
Thé érocedure can be repeated to obtain finally

from (2.1). |
’ L t
M (t,t") =/To(t,t')ﬂ(t';t,,t) F T, (Lt IR(EY s £y0t,
u{’

2.6
b Ty (B ER(E st sty ) + ovs (2.8)

3 T,(t,t")R(E 5E45E5)
nv(t,t') = Ty (b, )R(t 52 ,t0) + Talt,
+ cea
i 1, te [tayty] (2.7)
Rtstarta) =1 td [tarty)
for all t,, t;, and t. Also
= n (t,t")R(tM-t1), r even
To(t,t') = &(t-t') = I at"T__, (¢,
L
t roodd (2.0)

y n noLty,
Tr(L,L‘) , I HL"IF_1(L.L Ye(Lmr-1t)
t 1

r of
of terms in these series depends on the numbe

If t_ is the final transition time,
b an integral, the lower

it can be shoun that u(t)

The number
transition times tr. '
then where it is the upper bound in

bound is =-e. In a similar manner,

can be decomposed in the form

u(t) = gt'r (t,t")u(t") + dt'FV(t,t')v(t‘) (2.9)
) wy (1)
where ‘ e e
Fv(t,t‘) = No(t,t")R(t st1.t) + Np(t,t JR( 358,

2.10)
+ Nu(t,t‘)R(t';ts,t“) £ e 0d (
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Fu(t,t') = Nx(t,t')R(t'Stzgtl) + Na(t,t')R(t'itq’ ts)

LN

where the quantities Nr(t,t’) are given by formulae akin to

(2.8) but with 2(t) and k(t) interchanged.

This apparently trite formalism is actually extremely
powerful in the context of non-inertial boundary value prob-
lems. The decomposition was developed a
the Normal Contact Problen (2.3)

to the steady state case [4]

s mentioned to solve
and applied more Tecently

. A form of it is the fundament;
ingredient required to write down an integral equation for
moving load problems (a special case of which was

derived some
Limo wgo [5,06])

and perhaps more yonural problums aluo, It
arises also in the tase of crack problems in a manner which
we shall now discuss.

3. CLOSING CRACK PROBLEM

Consider a fixed length crack lying along the X-axis
occupying the region [-c,c], in an infinite viscoelastic mediu
Let there be a constant pressure p(t) acting on both faces
where p(t) may change sign,
elastic medium, such a sign change from
would lead to instant closure,

viscoelastic medium,

while the crack is open, In an

positive to negative
This is not the case in a

which makes the problem non-trivial and

leads to certain interesting effects, While the crack is

open, this problem is one covered by the

Classical Correspon-
dence Principle and the solution may be i

mmediately written

down since the elastic solution is known [7]. In particular,

we have that the g9ap is given by

alx,t) = 2m(x)q(t) (3.1)
where
m(x) = (c? - xz)£
t
a(t) = [ atrk(tryp(er)
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is defined by the fact

h _ uantity k(t), zero for negative t,
The q

i i iven by
s Fourier transform k(w) is g

(1-9(w)) /i (w) (3.3)

that it
K(w) =
; ial
eneralised Poisson's ratio of the material,
9

» i a LA kY =
ey Vi) l? terms of the complex moduli p(w) and Alw) acc
ble in

' ula i ity factor
. : , The stress intensity
h | la.

ording to the stafdard form

i
has the form f

/ = : (t) (3.4)

Ky, = c?p(t

g negative,
hile p(t) is zero or
. k may be open u
since the crac

. . to
negative, in contrast
ity m also be zero or
this quantity may

the
When the quantity q(t) becomes zero,

the elastic case. [-c,c] is no longer known.

crack closes and the pressure on ) e ahe
a
Thus, let p(t) be denoted by po(t 5

k is closed.
the crack is open; and by pc(t) when the crac

is closed.
however that q(t) is known when the crack is
Note houw

LE y
I 1S 1 act zero But this is DreClSel the SltUatlD we

ere deali g wit abDVEy whe derivi Q the deco pDSltlD .
w

. Ll 1 y xXp
) we ca 1 ed atel write douw € licit
rom (2 B) and (2 20

forms for pc(t) and q(t):

ty |
p (t) = ¥ gt T _(t,t")p (t )
c =T 335544 trad (3.5)
i e (t1)
q(t) = ) J dt'nN_(t,t )P,
r=0,2,4.. tr+1

the seco d equatio ererri to t e 1 1 crack S open.
q 1 T T g 1 S whe the rac L T
. P .
I the crack is ClOSEdy the co ditio or the ext time o

TRapERing is (3.5)
plte) = po(to)

while if the crack is ope at time t the cor ditio or the
)

time of next closing is .
1 = 0 .
a(t,)
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These latter two equations may be used in conjunction with
(3.5) to inductively determine the times of opening and clo
The situation simplifies if steady state conditions under a
periodic load are assumed. Thus (3.5) - (3.7) constitute .
complete solution to the problem, in principle, and they arg
a simple application of the decomposition derived above.
This problem has in fact been solved for the special case of
standard linear solid under a sinusoidal load in [8,9]

by
means of a less general machinery,

and detailed results were
obtained for the case of a standard linear model. It may b
shown, using the explicit forms for (2.8) and (2.10
[4], that the general formulae (3.5)

results obtained in that paper.

) given i
- (3.7) reduce to the

Applications of the study of viscoelastic boundary valy

problems include the exploraltion of the phenomenon of hyster

etic friction which can be modelled by considering loads mov
over viscoelastic half-spaces.
in many contexts,

surface,

This effect may be significe
notably that of a tyre skidding on a road

Normal contact problems are relevant to th

e study
of impact phenomena,

while crack problems contribute insights
to fracture processes in real materials.
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