NUMERICAL METHODS FOR SINGULARLY PERTURBED
DIFFERENTIAL EQUATIONS

£, O’Rionrdan

A sinqular perturbation problem is a problem which depends
on a parameter (or parameters) in such a way that solutions of
the problem behave nonuniformly as the parameter tends toward
some limiting value of interest. Such singular perturbation
problems involving differential equations arise in many areas
of interest, e.g. modelling of semi-conductor devices, aero-
dynamics, fluid mechanics, thin shells. We illustrate some

of the nonuniformities that occur with some simple prototypes.

Example 1 This example deserves a brize as ane of the most

commonly used "first examples" in the literature.

ey" + y' =0 0<x <1 € >0
y(0) =0 y(1) =1
Defining the limit function y(x) = lim y(x) we see that
e~+0

0 if x = 0
y(x) = ‘ ‘
1 otherwise

which is discontinuous at x = 0. Thus

lim lim y(x) £ 1lim lim y(x)
x+0 e-+0 e+0 x-»0

The solution of the reduced problem (obtained by setting
eE=0 andkomitting the boundary condition at x = 0) is yo(x)=1.
For small €, y is close (in the max norm) to y, except in a
small neighbourhood of x = 0, called the "boundary layer" -
because of a mathematical analogy with the boundary layers of

fluid dynamics. The boundary layers in the flow of fluids
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of low viscosity are narrow regions near certain parts of the
boundary, where the flow velocity changes rapidly from zero
at the boundary to values almost equal to those obtained for

an inviscid flow.

In a given;singular perturbation problem more than
This is illustrated by

Example 2

one boundary layer caqloccur.
|
ey" - & =0 0 <x <1 €<0

"

y(0) = y(1) =1

This problem has two boundary layers - one at each end of [0,1].

1t 1
__
0 1 0 v [
EXAMPLE 1 EXAMPLE 2
Example 3 The nonuniformity can also occur inside the domair
ey" + (y23)' =0 -1 < x < 1 e >0
y(-1) = -1 y(1) =1

The limit function y(x) is

-1 -1 < x <0
Cy(x) = 0 x =0
+1 0 < x < 1
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D and we say that there

puniformly at x
r an interior transition layer) at the
jution changes from concave to convex at this

Thus y(x) behaves no

is a shock layer (o

origin. The so
this change in convexity is one of the nasty features

in general, interior layers are a lot harder to

Shocks

point -
with than boundary layers.

)

y(x)
2x for x > 0

The transition between these two curves takes place in a corner

layer near the origin.
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EXAMPLE 5

opposite occurs.

of shocks.
wrestle

Example 4 The last example was a nonlinear problem.

can also occur in linear problems.

ey" + 2xy' =0 -1 < x <1 e >0

y(=1) = =1 y(1) =1
The solution (as in Example 3) has 'a shock at x = O. Linear EXAMPLE 3
i
ne of the coefficients has a zero inside the
problems where © ; ; Example B It is common practice to use the term 'singular
domain are called turning-point problems. i i '
perturbation problem! when referring to differential equations
where the nonuniformily appears due to the loss of order in
Example 5 The solution of a problem may behave uhlformly the reduced (i.e. € = 0) differential eguation. However, non-
throughout the domain, but its derivative can behave non- uniformities can occur in other ways.
uniformly.
ey" + xy' -y =0 -1 <x <1 e>0 (x + e)?y' +e =0 x >0 e>0
y(-1) =1  y(1) =2 y(0) =1
The limit function Y(x) is The exact solution is y(x) = e/{x + £). Thus
-x for x s O 1 if x =0
lim y{x) =
e+0
0 otherwise

Usually, as € + 0, the reduced solution and the exact solution
are close outside a small layer region. In this example the

There are two main approaches to solving differential

equations numerically:
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(1) Finite Difference Methods
In one dimension, divide the interval [a,b) into N sub-

intervals

a = Xg < X; < sevecnne < XN = b

Replace y and its derivatives in the differential equation by

suitable (difFerence) approximations
e.g. replace y'(xj) by (uj+1 -.MJ-)/(><J.+1 - xj)

and then replace the coefficients of the derivatives by an

appraopriate appraoximation.

e.g. an [Xj'xj+1] replace a(x) by a(xj) or a(xj+1)

A system of algebraic equations is fhen solved to generate a

set of points {uj) as an approximation to the set (y(xj)}.

(2) Finite Element Methods

A function u(x) is generated by discretizing a weak form
of the differential equation. This function approximates the

solution y(x) globally.

In this note we will confine the discussion to finite

difference methods.

Classical numerical methods perform badly (to say the
least) when applied to singularly perturbed problems. In
particular, their atrocious behaviour 'is most noticeable in
non self-adjoint problems.

Consider Example 1 again. The solution of this is

y(x) = (1 - exp(-x/€))/(1 - exp(-1/€)

A classical finite difference scheme on a uniform mesh

- x. = h for all j) for this problem would be

i.e.
(i.e. x 3

3
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u =0 uy = 1 ho= 1/N

The solution of this d}fference scheme is

uy = (1 -ij)/(1f- AV) where A = (1 - h/2e)/(1 + h/2€).

It can be shouwn that:

(a) If N is odd (i.e. divide the interval into an odd

number of subintervals) and

(i) if j is even then uj =+ 0D as € + 0;

(ii) if j is odd then uj * 1 as € + 0.

This results in a bounded oscillation between odd and

even nodes.

(b) IFf N is even and

(1) if j is even then uj » j/N as € » 0;

(ii) if j is odd then uj > = as e + 0.

In this case, the odd/even separation is even more dis-
astrous. The oscillations grow as € * 0.

These wild oscillations or "yiggles" (engineering jargon)
~also occur when classical finite element methods are used.

Engineers working with Y"real-life problems" were the first to

. notice these wiggles. Their first concern was to somehow get
rid of the oscillations. The problem is most noticeable when
the ratio h/2e > 1 (the abave formula for uj has problems when
h/2e = 1). Initially, they simply reduced h (i.e. increased
the number of mesh points) in order to keep the ratio h/2e <1,
ilowever, for 'small' values of € and in higher dimensions this
restriction on the mesh size became too expensive. Their next
jdea was to use a nonuniform mesh - using a finer mesh in layer

regions. This still placed restrictions on the mesh size.
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CASE (a) CASE (b)

Then they hit upon tupwinding'. This involves taking a sult-

able difference approximation to the first derivative:
if the layer is to the left, replace.y'(xj) by (uj+1-uj)/h;
if the layer is to the right, replace y'(xj) by (uj-uj_1)/h.

For Example 1, the upwind difference scheme is:

elujug - 2uj * uj_1) . Uikt Y5
h? ' h

The solution of this difference scheme is

b= (1 - i - V) where T = 1+ h/e §=0,1,2,..,N

3

As € + 0 u; + 1 for all j # 0, and ug

3 0.

§=1,2, 000 sN=1

Upwinding does remove the wiggles and for small values
of € it appears to do the job, but for large € it is not as
accurate as classical difference schemes. Upwinding also
tends to ngmear" the abrupt change in a shock and makes it
difficult to locate ("track") the position of a moving shock

in a time-dependent prpblem.
!

TRUE UPWINDING

Upwinding is an improvement, but it still does not solve the

problem.

We would like to find a difference scheme ({on a uniform -
mesh) having the property that its solqtion (uj} is such that
for all j 2 0

ly(xj) - Ujl K Chp

where p >0 and C is a constant, both independent of 'j, h and
E. If we have such a difference scheme, then we say that its
solution converges to the solution of the continuous problem

uniformly in € with order p. Upwinding does not converge

uniformly.

In 1955, Allen and Southuwell proposed a neu method for
a problem in fluid mechanics, based essentially on the form

of the exact difference scheme for a constant coefficient
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problem in one dimension. In 1969, the Russian A.m, Ilt'in

examined the problem

ey" + a(x)y' = f(x) 0 <x <1

y(0), y(1) given a(x) za > O

a(x), f(x) sufficiently smooth

and showed that a difference scheme similar to Allen and
Southwell's converged uniformly in ¢ with order one. In the —
1970s, more uniformly accurate difference schemes were found.
In recent times (1980-1985), three point difference schemes
which are uniformly second accurate have been appearing. All
these difference schemes, which are based essentially on being
exact for constant coefficients, arle called exponentially- ’
fitted difference schemes (or "smart upwinding" by the engin
eers). Thus, apart from a few loose ends, good numerical
methods for singularly perturbed differential equations in one
dimension (which are linear and without turning-points) exist
and the area seems to be all sown up. BUT what about tuwo
dimensions? Here there are na significant results whatsoever -
either analytically or numerically.

fitted difference schemes rely on being able to solve the con-

Since exponentially

stant coefficient analog of the problem, no extension to higher
dimensions has yet been faund. In two dimensions, there is

a bottomless pit of viciously hard singularly perturbed prob-
lems. In one dimension, problems which exhibit shock behav-
iogur have not been satisfactorily dealt with yet, and as for
non-linear problems - well, it probably wen't be till after

the year 2001 that they'll be looked at seriously!!
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ASPECTS OF HIPPARCOS

W.G, Tuohey

1. INTRODUCTION
cts of Lhe,HIPPARCUS space astrometry mission

Some aspe
The objectives of the mission

ed in this ag&icle.

are present
peration are described in Section

its broad principlﬁﬁ of o
system leve
ntributed over the past few years, are
illustration of the

and
2 In Section 3 1 analyses of the mission, to

which our compahy has €O
Finally, in Section 4, as an

gutlined.
relatively simple, problem is discussed.

work, a specific,

3. HIPPARCOS

HIPPARCOS is a space astrometry mission, sponsored by the

fFuropean Space Agency (ESA),

1988. Its objective is to measur
4positions, proper motions, trigonometric parallaxes) of about

100,000 pre-selected stars to a

which is scheduled for launch in

e the astrometric parameters

(very high) accuracy of 0.002

arcseconds.

ie of measurement is to scan, continuously

The basic princip
the entire sky with a telescope capable

and systematically,
between stars separated by

measuring the angles
It is possible, by numerically combining sev-
to derive the req-

of accurately

a large angle.

eral millions of such angular measu
The period of data collection

rements,
uired astrometric parameters.
{s to be 2% years.

The telescope is gquipped with two fields of view (FOVs)

easurement of the angles between widely separated
The angle

to enable m
Each FOV is of dimension 0.9° x 0.99
called the basic angle, is denoted by y =58°

stars.
between the FOVs,




