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EDITORIAL

At the ordinury meeting of 20 Decemlen 1985 the Sociely

decided to change the nume of the Newsletten to the Irish Math-

ematicul Socicty Bulleling This move neflecls a widespreud

penception that the loamén title did not do justice to the
sullstunce of the puﬁéicuéion which has feen developed overn
the pust fow ycuig. It was also decided to continue the pres-
ent numlening so that this issue maintains the sequence as
numben 16.

Perhaps a more significant change in cincumslances arnises
s a nesultl of « neview by the NBST of its painting arnange-
ment s, In discussion with the Sociely it was agreed that
the Bourd would paint two éssues in 1986, But they did not
give any fiam commitment to printing /dathca issUues, It
should Ce olscaved that the NBST prints the Newsleltern/Bulletin

Lree of chaage to the Society. The Society MemBenship Fee

does notl covea any of the aunning costs apant from typing.
Therefone, any attempt to make the puldlication self-financing
would involve the introduction of a sulscaiption fee at a Level

deteamined Ly the cost of commencial printing.

We brning these points to the attention of oun neadens
in onden to stimulate a delate on the nole of the Newsletien/

Bulletin in the activities of the INS, the gquestion of financing

and continuation, the frequency of pullication and s0 on.

Commenf& and contnilulions in the foam of fetteas to the Editon
would 8e welcome,

The deudline fon copy for the Septemben issue is 30 June
1986.

Pat Fitzpatrick




IRISH MATHEMATICAL SOCIETY

12.15, 19th December, 1985, in 39 TCD

Committee Meeting,

3 i . Buttimore,
present: M. Newell (President, 1N the Chair), N

i . A,
pP. Fitzpatrick, B. Goldsmith, R. Timoney (pp

0'Farrell). |
M. Stynes, 5. Tobin,

Apologies:S. Dineen, G. Enright, F. Galnes,
T. West.
i ber, 1984
1. The Treasurer's report (for the period 1st Octo '

i i and
to 30th September, 1985) (audited by R. Critchley

J. Leahy) was approved.

negotiated with the NBST

i i ineen
2. The Vice-President, S. Di ’ ne o result

g of the Newsletter.
further issues in 1986,

ources of support

for continued printin
the NBST has agreed to print two .
it was agreed to investigate possible s o
for printing the Newsletter such as an wB?T‘ca e
commercial sponsorship. Also the p0551b111ty o

the UCD
the Newsletter could be printed (for a fee).b:.n ESCh001
printing facility or with the aid of the Prin ;tgeet
in the Dublin Institute of Technology. golton Street.

. . e the
p. Fitzpatrick explained that the Jjob of printing
d to be too small by most comm-

Neusletter was considere 1d be done

indi co
ercial printing houses put that the binding
commercially by a company in Dundalk.

west on the
3. The committee noted a report prepared by T. We

e London Mathematical So
1986. The speakers are w.B.

ciety which
joint meeting with th
is to take place in March,
connes (College de france), R:G.

Arveson (Berkeley), A. oral costs

ds).
Douglas (Stonybroock) and E.C. Lance (Lee. ) e Lo nas
were estimated to amount to £2,430 of which

i d
agreed to provide 5tg £1,500 and the Royal Irish Academy

itt agreed
Mathematical Symposium fund IRE£250. The commzi e:oc?ety
that the balance of £380 would be prou1ded by e »

as requested.

4, In addition the committee agreed to the following expen-

diture on conferences:

Galway Groups (May, 1986) £100 + guarantee of £50;

Cork Analysis (May, 1986) £ 70 + guarantee of £30.

5. The committee noted a report from A. Seda on a meeting

of the European Méthematical Council Data Base Committee.

The committee mejcomed the contribution being made by
Dr Seda to the EMCDBC on behalf of the IMS and it was

agreed td endorse strongly his application to the NBST
for financial support.

6. In response to a request from M. Atiyah for the IMS to
nominate a representative to attend an EMS meeting in
Liblice, Czechoslovakia (in November, 1986) it was agreed
to enquire whether the EMC could offer travel support to
an IMS representative.

7. It was agreed, in response to a suggestion by the Treas-
urer, that lapsed members (as defined by the rules) should
be charged a £10 re-instatement fee.

8. P. Fitzpatrick suggested that the overseas membership
fee of £5.50 (or its equivalent) was too low.

9. It was agreed to write to the American Mathematical Soc-
iety to enquire into the possibility of reciprocity of
membership.




IRISH MATHEMATICAL SOCIETY

Ordinary Meeting, friday December 20th, 1985
at
Dublin Institute for Advanced Studies

12.15 pm

The President, M. Neuwell took the chair and there were 14

members present.

1. The minutes of the previous ordinary meeting of April 14th,
1985, which had appeared in the October Newsletter, were

agreed.

2. The Treasurer, G. Enright, presented his report which

had been audited by R. Critchley and J. Leahy.

3. The Treasurer mentioned that 18 members of the Society
had applied for reciprocal membership of the IMTA so far.
The Treasurer raised the question of how much lapsed
members should be required to pay if they wished to be
re-admitted into the Society. There was considerable

discussion on this point but no clear consensus was

reached.

4. R. Timoney reported briefly on his activities on behalf

of the Secretary, A.G. O'Farrell.

S. 5. Dineen reported on discussions he had with the NBST g,
concerning the printing of the Newsletter. These res-
ulted in the NBST agreeing to print two issues of the

Newsletter in 1986.

6. There was some discussion on whether it would be reason-
able to publish the Newsletter only tuwice annually.
The possibility of mailing the Newsletter to members

jndividually was raised. 1t was agreed that a more

appropriate title for the Newsletter would be "Bulletin"

R. Timoney presented a report drawn up by T. West on the
forthcoming joint meeting with the Landon Mathematical
Society (on Friday afterncon/Saturday morning, March
21-22, 1986). The speakers are W. Arveson (Berkeley),
A. Connes (College de France), R. Douglas (Stonybrook)
and E. Lance (Leeés). The lectures will take place at
Trinity College,fDublin. The Royal Irish Academy will
host a Hamilton txhibition and a reception on the Friday
evening and that will be followed by a conference dinner
in the Kildare Street and University Club. The total
cost is estimated to be £2,430 of which the London Math-
ematical Society has agreed to contribute £1,500 ster-
ling and the Royal Irish Academy Mathematical Symposium
Fund £250. The balance of approximately £380 will be
met by the Society.

The following were nominated, seconded and elected unopp-

osed (for two-year terms):

Treasurer - G. Enright
Secretary - R. Timoney
Committee - R. Critchley

P. Fitzpatrick
P. McGill
S. Tobin

Professor Maurice Kennedy was elected as the first hon-
orary member of the Society.




IRISH MATHEMATICAL SOCIETY

Membership List Supplement 86-1

Compiled January 27th, 1986

Amendments}

85005 Fitzgerald, Mr G.C. (ex RTC, Cork)
Statistical Software Ltd, Farm Centre,

85126 Rabman, Dr M.A. (NIHE, Limerick)

85175 Seifert, Dr B. (ex Paris)

Corpus Christi College, Oxford.

Additions:

86182 Harte, Dr J.
86183 0'Reilly, Dr M.
86184 Corbett, mr B.
86185 Higgs, Dr R.J.
86186 Burns, Dr J.
58195 Brennan, Mr M,

College of Technology, Kevin Street

86187 Gaffney, Mr
86188 McCarthy, Mr
86189 0'Gallchobhair Mr

NIHE, Dublin

86192 Burzlaff, Dr

86193 Carroll, Dr

RTC,
RTC,

RTC,

Dundalk.

Dundalk.

waterford.

wilton,

Cork.

Electronics Dept.

Mathematics Department, uco.

St Patrick's, Maynooth.

RTC,

T.
D.J.

p.

86190

86191

86194

86185

wWaterford.

0'Shea,

Tuite,

Lendach,

Murphy,

Dr

Dr

Dr

Dr

B.

m.J.

PERSONAL ITEMS

Da Eugene 0’Riondan of the Mathematics Department, Dundalk
RTC, has been invited to be a keynote speaker at BAIL IV
(4th International Conference on Boundary and Interior Layers)

in Novosibirsk, USSR, 7411 July 1986.
{
f

Da Radoslav Dimitric (éelgrade) has recently taken up a
Department of Education Postdoctoral Fellowship at the DIT,
Kevin Street. Dr Dimitric was a student of Laszlo Fuchs

in Tulane and works in the area of Abelian groups and module
theory
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R.LA. PROCEEDINGS

Members of the Irish Mathematical Society benefit from a special discount

of one-third of the normal price on subscriptions to Section A of the
Proceedings of the Royal Irish Academy

Orders may be placed through the IMS Treasurer




OBITUARY

Professon James R, Timoney

It was with surprise and great sadness that we learned of
the death of Professor J.R. Timoney on 11th August 1985. After
his retirement from UCD in December 1979, he often visited the
College and at the end of last June, he attended the customary

lunch for the Extern Examiner in Mathematics.

Dick Timoney was born in Belleek, Co. Fermanagh in 1909
and educated at St Macartan's College, Monahan, Blackrock Coll-
ege, Co. Dublin and UCD. He Bnteted\UCD in 1927 and in his
first year studied both Science and Ehgineering. obtaining
scholarships in both at the end of the year. He then had to
choose which one to continue in and he chose to study Mathemat-
ical Science. He graduated with a first class honours BA in
1930. Professor P.G. Gormley graduated the same year, also
with first class honours. Dick obtained a scholarship to
study for his MA, which he obtained in 1931 with first class
honours. He obtained a prize in the Travelling Studentship
examination which, together with a scholarship from UCD,
enabled him to spend the session 1931-32 in Edinburgh, where
he worked under the supervision of Sir Edmund Whittaker. On
returning to Dublin in 1932, he was appointed Assistant in
Mathematics in UCD. His duties involved teaching both Pure
Mathematics and Mathematical Physics.

utory Lecturer in 1837 and Professor of Mathematical Analysis

He was appointed Stat-
in 1966, which position he held until his retirement.

As a teacher, Dick Timoney was very highly regarded by

his students. His lectures were presented with clarity and

enthusiasm and he managed to convey to his audience the beauty
and elegance of the subject. He developed a very good rapport
with his classes. Despite his heavy Eeaching load and multit-
udinous administrative duties, Dick always found time to help

students individually and also to give additional exercise

-« 10 -

For example, the Third Science class - a favourite

classes.

of his which he taught for many years - used to have their
examinations in Autumn and it was not unusual to see him giving
a series of tutorials to these students in August. His good
relations with students extended outside the circle of those
studying Mathematics a?d he was sought after by student offic-
ers to be the obligatofy academic representative on various
student committees. QME was a member of countless committees
of this type.  As a result he was one of the best known members

of staff in Coilege.

Dick Timoney became Head of the Department of Mathematics
on the death of P.G. Gormley in 1973 and served in this capac-
ity until 1976.
of the day-to-day administration of the Department was done

However, for many years before that, much
by him. During his period as Head, the Department expanded
and flourished. He started the holding of department meet-
ings, thus making it possible for all members of staff to take
part in decision—making. His approach inspired a sense of
loyélty. commitment and co-operation from his staff and worked
very successfully. His judgement was particularly sound, not
only on matters affecting the Department but in matters affect-
ing UCD as a whole. He was forward-leooking in hisyviews and

was happy to adapt courses and methods to changing needs.

Dick involved himself very much in the development of
Mathematics in the country as a whole. The worldwide move-
ment to reform school Mathematics started in the 1960s. Dick
was one of the lecturers at the first course on "Modern Math-
ematics for Teachers" in UCD - later published in book form.

He was a former member of the Irish Mathematics Teachers Assoc-
iation and was Chairman of the Dublin Branch for many years.
He also made important contributions to the development of its
Newsletter. He was a judge at the Aer Lingus Young Scientists!
Exhibition for many years. Also in Third Level, he contrib-
uted greatly to the development of Mathematics in Ireland.

His relationship with the mathematicians in the other NUI

- 11 -




In the early 1960s,

he and Heini Halberstam worked closely together to improve

colleges and also in TCD was excellent.

the status of Mathematics in Dublin, and the good relations
thus established between the Departments in UCD and TCD have
continued to prosper. Dick also served on numerous appoint-
ment boards in the Civil Service and-third level colleges,
where his sound judgement has proved a great asset to the
country. ’

In the general life of UCD, Dick fimoney was a major
figure. He was a member of the Academic Council for thirty
years, having been co-opted in 1949 while still a lecturer.
He was a member of the Governing Body from 1864 to January
1979 and of its Buildings Committee from 1976-79.

the Governing Body as a member of several subcommittees estab-

He served
lished to resaolve specific problems. Some of these problems
were of a difficult and sensitive nature and Dick's diplom-

atic talents and genial manner made him an obvious choice to
carry out these tasks. He was Chairman of the Junior Acad-
emic Staff Association in 1947-48 and President of the Emp-
loyers Association in 1953-58,. He served for many years on
the Senate of the NUI, having been elected by convocation in
1964, 1972 and again in 1977.

UCD and on his many visits there since retirement, displayed

He had an abiding love for
great interest in what was happening there.

Dick always maintained his enthusiasm for Mathematics.
He was especially fond of "hard" complex analysis - zeta
function, Riemann hypothesis etc. He was always happy to
show his colleagues the shortest or most elegant way to solve
a particular problem. In his article in this Newsletter,
Number 3, he quotes a motto of one of his teachers, Professor
McWeeney, on the best way to approach a mathematical problem:
"if you attack it judiciously, it will come out in a line".
This characterised his own approach also, the "line" usually

involved some particularly neat trick.

- 12 -

Dick is survived by his widow Nora and their family of
The eldest, Richard, carr-
jes on the tradition and is a lecturer in Mathematics at TCD

four, two sons and two daughters.

Dick was always interested in engineering as a hobby - his
expertise with cars is legendary - and the other son David
carries on this interestz being a lecturer in Mechanical Eng-
ineering at UCD. The eldest daughter, Nicola, is an economist
and the younger, Norma,jis a dentist.
/

On behalf d; the mathematical community we wish to express
our deep sorrow at Dick's passing. For all of us, it is a
great loss; for Nora and his family, it is a particularly sad

one and we can but offer our condolences.

7.4. Lafley, Stephen 0'Brien

ORDINARY MEMBERSHIP

The Ordinary Membership subscription for the session 1985/1986
is IR5.00 per person. Payment is now overdue and should be
forwarded Lo the Treasurer without further notice.




NUMERICAL METHODS FOR SINGULARLY PERTURBED
DIFFERENTIAL EQUATIONS

£, O’Rionrdan

A sinqular perturbation problem is a problem which depends
on a parameter (or parameters) in such a way that solutions of
the problem behave nonuniformly as the parameter tends toward
some limiting value of interest. Such singular perturbation
problems involving differential equations arise in many areas
of interest, e.g. modelling of semi-conductor devices, aero-
dynamics, fluid mechanics, thin shells. We illustrate some

of the nonuniformities that occur with some simple prototypes.

Example 1 This example deserves a brize as ane of the most

commonly used "first examples" in the literature.

ey" + y' =0 0<x <1 € >0
y(0) =0 y(1) =1
Defining the limit function y(x) = lim y(x) we see that
e~+0

0 if x = 0
y(x) = ‘ ‘
1 otherwise

which is discontinuous at x = 0. Thus

lim lim y(x) £ 1lim lim y(x)
x+0 e-+0 e+0 x-»0

The solution of the reduced problem (obtained by setting
eE=0 andkomitting the boundary condition at x = 0) is yo(x)=1.
For small €, y is close (in the max norm) to y, except in a
small neighbourhood of x = 0, called the "boundary layer" -
because of a mathematical analogy with the boundary layers of

fluid dynamics. The boundary layers in the flow of fluids

- 14 -

of low viscosity are narrow regions near certain parts of the
boundary, where the flow velocity changes rapidly from zero
at the boundary to values almost equal to those obtained for

an inviscid flow.

In a given;singular perturbation problem more than
This is illustrated by

Example 2

one boundary layer caqloccur.
|
ey" - & =0 0 <x <1 €<0

"

y(0) = y(1) =1

This problem has two boundary layers - one at each end of [0,1].

1t 1
__
0 1 0 v [
EXAMPLE 1 EXAMPLE 2
Example 3 The nonuniformity can also occur inside the domair
ey" + (y23)' =0 -1 < x < 1 e >0
y(-1) = -1 y(1) =1

The limit function y(x) is

-1 -1 < x <0
Cy(x) = 0 x =0
+1 0 < x < 1

- 15 -




D and we say that there

puniformly at x
r an interior transition layer) at the
jution changes from concave to convex at this

Thus y(x) behaves no

is a shock layer (o

origin. The so
this change in convexity is one of the nasty features

in general, interior layers are a lot harder to

Shocks

point -
with than boundary layers.

)

y(x)
2x for x > 0

The transition between these two curves takes place in a corner

layer near the origin.

16

.\_
-

EXAMPLE 5

opposite occurs.

of shocks.
wrestle

Example 4 The last example was a nonlinear problem.

can also occur in linear problems.

ey" + 2xy' =0 -1 < x <1 e >0

y(=1) = =1 y(1) =1
The solution (as in Example 3) has 'a shock at x = O. Linear EXAMPLE 3
i
ne of the coefficients has a zero inside the
problems where © ; ; Example B It is common practice to use the term 'singular
domain are called turning-point problems. i i '
perturbation problem! when referring to differential equations
where the nonuniformily appears due to the loss of order in
Example 5 The solution of a problem may behave uhlformly the reduced (i.e. € = 0) differential eguation. However, non-
throughout the domain, but its derivative can behave non- uniformities can occur in other ways.
uniformly.
ey" + xy' -y =0 -1 <x <1 e>0 (x + e)?y' +e =0 x >0 e>0
y(-1) =1  y(1) =2 y(0) =1
The limit function Y(x) is The exact solution is y(x) = e/{x + £). Thus
-x for x s O 1 if x =0
lim y{x) =
e+0
0 otherwise

Usually, as € + 0, the reduced solution and the exact solution
are close outside a small layer region. In this example the

There are two main approaches to solving differential

equations numerically:

17



(1) Finite Difference Methods
In one dimension, divide the interval [a,b) into N sub-

intervals

a = Xg < X; < sevecnne < XN = b

Replace y and its derivatives in the differential equation by

suitable (difFerence) approximations
e.g. replace y'(xj) by (uj+1 -.MJ-)/(><J.+1 - xj)

and then replace the coefficients of the derivatives by an

appraopriate appraoximation.

e.g. an [Xj'xj+1] replace a(x) by a(xj) or a(xj+1)

A system of algebraic equations is fhen solved to generate a

set of points {uj) as an approximation to the set (y(xj)}.

(2) Finite Element Methods

A function u(x) is generated by discretizing a weak form
of the differential equation. This function approximates the

solution y(x) globally.

In this note we will confine the discussion to finite

difference methods.

Classical numerical methods perform badly (to say the
least) when applied to singularly perturbed problems. In
particular, their atrocious behaviour 'is most noticeable in
non self-adjoint problems.

Consider Example 1 again. The solution of this is

y(x) = (1 - exp(-x/€))/(1 - exp(-1/€)

A classical finite difference scheme on a uniform mesh

- x. = h for all j) for this problem would be

i.e.
(i.e. x 3

3

- 18 -

N e Lk e e L

N

. - 2us 4+ Us_q) u T
fﬁfiil_____l____i:l_ PR £ B ol R B, B I PR
‘ h? 2h :
u =0 uy = 1 ho= 1/N

The solution of this d}fference scheme is

uy = (1 -ij)/(1f- AV) where A = (1 - h/2e)/(1 + h/2€).

It can be shouwn that:

(a) If N is odd (i.e. divide the interval into an odd

number of subintervals) and

(i) if j is even then uj =+ 0D as € + 0;

(ii) if j is odd then uj * 1 as € + 0.

This results in a bounded oscillation between odd and

even nodes.

(b) IFf N is even and

(1) if j is even then uj » j/N as € » 0;

(ii) if j is odd then uj > = as e + 0.

In this case, the odd/even separation is even more dis-
astrous. The oscillations grow as € * 0.

These wild oscillations or "yiggles" (engineering jargon)
~also occur when classical finite element methods are used.

Engineers working with Y"real-life problems" were the first to

. notice these wiggles. Their first concern was to somehow get
rid of the oscillations. The problem is most noticeable when
the ratio h/2e > 1 (the abave formula for uj has problems when
h/2e = 1). Initially, they simply reduced h (i.e. increased
the number of mesh points) in order to keep the ratio h/2e <1,
ilowever, for 'small' values of € and in higher dimensions this
restriction on the mesh size became too expensive. Their next
jdea was to use a nonuniform mesh - using a finer mesh in layer

regions. This still placed restrictions on the mesh size.

- 19 -




CASE (a) CASE (b)

Then they hit upon tupwinding'. This involves taking a sult-

able difference approximation to the first derivative:
if the layer is to the left, replace.y'(xj) by (uj+1-uj)/h;
if the layer is to the right, replace y'(xj) by (uj-uj_1)/h.

For Example 1, the upwind difference scheme is:

elujug - 2uj * uj_1) . Uikt Y5
h? ' h

The solution of this difference scheme is

b= (1 - i - V) where T = 1+ h/e §=0,1,2,..,N

3

As € + 0 u; + 1 for all j # 0, and ug

3 0.

§=1,2, 000 sN=1

Upwinding does remove the wiggles and for small values
of € it appears to do the job, but for large € it is not as
accurate as classical difference schemes. Upwinding also
tends to ngmear" the abrupt change in a shock and makes it
difficult to locate ("track") the position of a moving shock

in a time-dependent prpblem.
!

TRUE UPWINDING

Upwinding is an improvement, but it still does not solve the

problem.

We would like to find a difference scheme ({on a uniform -
mesh) having the property that its solqtion (uj} is such that
for all j 2 0

ly(xj) - Ujl K Chp

where p >0 and C is a constant, both independent of 'j, h and
E. If we have such a difference scheme, then we say that its
solution converges to the solution of the continuous problem

uniformly in € with order p. Upwinding does not converge

uniformly.

In 1955, Allen and Southuwell proposed a neu method for
a problem in fluid mechanics, based essentially on the form

of the exact difference scheme for a constant coefficient

- 21 -




problem in one dimension. In 1969, the Russian A.m, Ilt'in

examined the problem

ey" + a(x)y' = f(x) 0 <x <1

y(0), y(1) given a(x) za > O

a(x), f(x) sufficiently smooth

and showed that a difference scheme similar to Allen and
Southwell's converged uniformly in ¢ with order one. In the —
1970s, more uniformly accurate difference schemes were found.
In recent times (1980-1985), three point difference schemes
which are uniformly second accurate have been appearing. All
these difference schemes, which are based essentially on being
exact for constant coefficients, arle called exponentially- ’
fitted difference schemes (or "smart upwinding" by the engin
eers). Thus, apart from a few loose ends, good numerical
methods for singularly perturbed differential equations in one
dimension (which are linear and without turning-points) exist
and the area seems to be all sown up. BUT what about tuwo
dimensions? Here there are na significant results whatsoever -
either analytically or numerically.

fitted difference schemes rely on being able to solve the con-

Since exponentially

stant coefficient analog of the problem, no extension to higher
dimensions has yet been faund. In two dimensions, there is

a bottomless pit of viciously hard singularly perturbed prob-
lems. In one dimension, problems which exhibit shock behav-
iogur have not been satisfactorily dealt with yet, and as for
non-linear problems - well, it probably wen't be till after

the year 2001 that they'll be looked at seriously!!
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ASPECTS OF HIPPARCOS

W.G, Tuohey

1. INTRODUCTION
cts of Lhe,HIPPARCUS space astrometry mission

Some aspe
The objectives of the mission

ed in this ag&icle.

are present
peration are described in Section

its broad principlﬁﬁ of o
system leve
ntributed over the past few years, are
illustration of the

and
2 In Section 3 1 analyses of the mission, to

which our compahy has €O
Finally, in Section 4, as an

gutlined.
relatively simple, problem is discussed.

work, a specific,

3. HIPPARCOS

HIPPARCOS is a space astrometry mission, sponsored by the

fFuropean Space Agency (ESA),

1988. Its objective is to measur
4positions, proper motions, trigonometric parallaxes) of about

100,000 pre-selected stars to a

which is scheduled for launch in

e the astrometric parameters

(very high) accuracy of 0.002

arcseconds.

ie of measurement is to scan, continuously

The basic princip
the entire sky with a telescope capable

and systematically,
between stars separated by

measuring the angles
It is possible, by numerically combining sev-
to derive the req-

of accurately

a large angle.

eral millions of such angular measu
The period of data collection

rements,
uired astrometric parameters.
{s to be 2% years.

The telescope is gquipped with two fields of view (FOVs)

easurement of the angles between widely separated
The angle

to enable m
Each FOV is of dimension 0.9° x 0.99
called the basic angle, is denoted by y =58°

stars.
between the FOVs,




The FOVUs scan the entire celestial sphere through a com-

bination of two motions (see Fig. 1)

(a) A short period spin about the ZG-axis (rate R = 11.25
rotations/day).

(b) A long period revolution (precession of the Zg axis)
which describes an axisymmetric cone about the line
joining the satellite and sun. The half-cone angle
is called the revolving scanning angle and is denoted
by ¢ (= 43°). The average precession rate is K (=6.4

revolutions/year).

There is a modulating grid at the focal plane of the
telescope which, together with a phqton counting detector,
encodes the movement of a star as it crosses a FOV. This
constitutes the primary instrument. In addition, there is
another detector (called a 'star mapper') placed in the focal
plane. Its purpose is to provide data for control of the sat-
ellite's attitude and to fulfil a supplementary scientific
mission (named TYCHD). (By attitude is meant the pointing

directions of the Z and X axes - see Fig. 1).

3. GENERAL SYSTEM ANALYSIS

selection of Key Parameters

The values chosen for parameters C, K and R are limited
by certain technical considerations. For example, the elec-
trical power supply (solar panels) depends an § while a louw
value of K makes for ease of manoeuvrability; the choice of

R is limited by data rates and on-board computer capability.

There are scientific constraints, also. These include
a requirement for uniform sky coverage, optimisation of global
accuracy and minimisation of interruptions (occultations) due

to earth and moon. There are similar considerations far the
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integral divisors of m are found

the data reduction process.

choice of y; for example,

to exhibit undesirable behaviour in

Accuracy Analysis
Accuracy analysis makes up a major part of systems act-
Its purpose is to assess the impact of different error

ivity.
Such assessments enable design

sources on overall accuracy.
trade-offs to be made, for example.
sources considered are photon statistica
high frequency attitude jitter and irregularities of th=

Some of the major error

1 noise, background

noise,

grid.

Photometric Calibration ;
While we have contributed to the two foregoing topics,

our main activity has con-

(Pre-

There are two prin-

mainly at a computational level,

cerned in-orbit calibration of the satellite's payload.

launch calibrations are quite distinct.)

cipal topics, photometric calibration and geometric calibration.

As an illustration of photometric calibration, consider

1 = CI (1)

o pf
s the photoelectron count rate observed by

where IO represent
The objective

the incident photon flux.

an instrument and Ipf
the instrument serfsitivity.

of the calibration is to estimate C,

In practice, C is not a simple constant. It may depend,

for example, on position in the field of view (n,€E), on star

colour (8 - V), on time (t) and on count rate (non-linear

effect). Thus a simple form for C might be

c = co+c1n+czg+ca(a-v)

+ Cun(B - V) + CsE(B - V) + Cet + C-,ID (2)

Therefore, the calibration task is to estimate parameters

Co to Cy. A weighted least squares procedure is the method

used for this estimation.

A major part of the work is to assess the performance of
the calibration method. The main results of such an assess-
ment are the accuracwlachievable for a measurement period of
‘given duration (i.e.;For a given volume of data) and the app-
ropriate forqffor function C. The assessment takes account
of measuremeht error models, of predicted instrument response

and of a priori errors on star magnitude and colour,

Geometric Calibration

Each star in a field of view is assigned a longléudinax
(n) and transverse (§) coordinate; these define the field
(sky) position of the star. This is illustrated in Fig. 2,
which distinguishes preceding (p) and following (f) fields.
For each star, there is a corresponding star image on the det-

ector grid. This image is assigned grid coordinates (G,H).

Scanning
Direction

FIGURE 2: FIELD AND GRID COORDINATES




There is a mapping between field and grid which can be

described in polynomial form. Thus, for the longitudinal grid

coordinate one has

B (a) m_n
¢ - nZDmgo Zan " :

(3)
p or f according to field of vieuw.

where a =

The various terms of (3) may be associated with such eff-

ects as grid defocusing and in-plane displacements, grid rot-
ation and tilts and telescope mirror deformations. The basic
angle (y) can be included in (3), in the terms agg), ass).

The main part of the mappingy called the nominal field to

grid transformation, is known preflaunch. However, it is an
in-orbit calibration task to estimate the additional distortior

induced post-launch.

The above polynomial form describes large scale distort-

ions. In addition, it is necessary to determine medium scale

The latter are described by a large matrix of
components ( =150 x 150).
devised takes account of the good pre-launch knowledge of these

distortions.
However, the calibration method

components and, thereby, reduces the measurement time which

would otherwise be necessary.

Among other geometric calibration tasks may be noted that
of chromaticity calibration. In the present context, chromat-
jcity refers to the displacement of a star image with respect

to the image position of a star of average colour.

4. A SPECIFIC PROBLEM

Method

The main in-orbit calibration activities are carried out

during the commissioning period. This commences some days

- 30 -

after launch and lasts
there is an initialisation phase during which attitude

this,

control of the satellite is acquired.

about one menth. However, prior to

As part of this process,

a first calibration of the basic angle (y) and of grid rotation

(8) is required;

this topic is discussed in what follows.

/
The star mapper ifs the only detector operational during

{
the initialisation phase.
form the basis. for the calibration method.

detector mea

reference

as appropriate).

gxactly Y

Therefore, its measurements must
this

sures the time at which a star crosses a particular

Essentially,

line in the field of view (preceding or following,

The distance between the reference lines is

(see Figs 2 and 3).

STAR SEPARATION

FIGURE 3:

The method is based on measurements on a set of Qtar

pairs.

reference

member crosses the following reference line (see Fig.

Hence,

Consider the ith

priori

value for their separation be Gi.

Each pair is such that one member crosses the preceding

line at approximately the same time as the other
2).

the separation between the pair is, approximately, Y.

Let the a
its longitud~

as in Fig. 3.
Thus,

such pair,

inal (along scan) component is
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§ . =

4
Ui (63 - (&, 5 - £p 1)) (4)

. . are transverse coordinates.
where &, 3’ Er,i

Let tp,i' tf,i be the transit times for the preceding and

following stars, respectively. Then, if wy is the rotation

rate, one has

6 =

Lot vty i

tp’i)q+ tan e(gp’. Ef,i)

In fact, g is small so that one may write

v+ 8(E, - Ep,5) =6

,i L,i ) reg (8)

-wglte g - by,

The: added term, €, represents error (from a number of sources).

The measurements from a number, N say, of such star pairs
are collected, each giving rise to an equation of form (5).
A weighted least squares method is applied to this set of equat-

ions to obtain estimates Y and 8. :

Assessment

In order to assess the method, a number of simplifying,

put not unrealistic, assumptions may be made . Thus, one may

assume that observations are uncorrelated and that
Var (Ei) = o? Vi . (B)

Further, one may assume that & ,i? Ef.i are both random variab-

les uniformly distributed in (-a,a) (a = 20 arcminutes for star
mapper)- It then follouws, approximately, that
a 1
Y = 'r\szi ‘ (7)
A 1, 3
2 — - . .
2Dy (8, - G, (8)
where
vio= S, ety T by (9)
- 32 -

Moreaver,

Var (;) = oz/N‘ (10)
Var (8) = (g2p) o/ (1)

and |
Jcov (3,8 = 0 (12)

Thus, the achievable’;ccuracy depends (unsurprisingly) on the
ratio .
p o= o?/N (13)
An approximate error analysis of the right-hand side of
(5) yields
g2 = a + bT;

(14)

in which estimated values are available for a and b. TS is
the average interval between transits of a suitable star palr,
(15)
Let the total number of candidate calibration stars, .
assumed uniformly distributed in the sky, be M. Then, the den-

sity per square degree is
p = Mmu/a(180%) (16)
Noting that the mean spin rate is 168.75° per hour and that tha

star mapper width is 40 arcminutes, it follows that an area

A = (168.75/3600)(40/60) = 0,03125 (17)

square degrees is swept out in 1 second. Hence, the average

rate of arrival of a candidate star in the star mapper is

" given by

A = Ap = 0.03125p (18)
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A minimum separation time of 10 seconds, between members

of a star pair, is necessary to avoid ambiguity in identific-

ation. On imposing this constraint and on letting the maximum

separation time be tm , it can be shown that

ax

T = (19)

1[e-802 | o~2Mtmax+20) -1
P A

where Tp is the average interval between suitable star pairs.

Moreover, one may show that

il

1

_ 1 -10A
'T = 5+ [10e -

E-Atmaxl-l
max

(20)
The total number of suitable star pairs in a given period

T may then be calculated as

tot

/(7 (21)

Noo= Ttot p

+ Ts)
It is clear from the foregoing that the two elements of
In order to optimise the
it is

clear from the nature of the dependencies on Ts that there are

u (Equation (13)) depend on axe

method's performance une sceks to minimise u. However,

conflicting objectives (of minimising 0? and maximising N).
The value of t

ma
promise between these objectives defines a suitable star palr.

« (and, hence, of TS) which gives the best com-
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ERRATUM

In my paper "Capacities, Analytic and Other", INS News-
Jetter, 13, pp. 48-56, the symbol H|V¢[||L1 appearing in
line 6 of p. 54 should be replaced by |||V¢][|ﬁ . Then
in lines 10-13 of that page m1'1 should be redegined as the

space of L1 functions with H1 distributional derivatives.

A.G. 0'Fannell
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LOFTING THE VIADUCT WITH A MINIMUM OF EFFORT

G = xtana- LS (1)
Geonge Kelly y = sulcaosla

The Chetwynd Viaduct lies astride the Cork-Bandon road, Here x and Y denote the horizontal and vertical directions
its gaunt, dilapidated structure dominating the adjacent respectively, and u at @ with the horizontal is the initial
countryside. Since its construction in 1849 it has presented velocity of projection. The two values of x for which the

a formidable challenge to bouwl-players, namely, to loft a 28 " height is h are given gy the quadratic
/

oz. bowl over its forbidding height of 90 feet. It is claimed { 2 2

1 . . gx? - 2u?sinacosda+ 2u*hcos’a = 0 (2)
that a Mr Dan Hurley from Bandon accomplished this feat in 1900 H
and, likewise, a Mr Bill Bennet of Killeady, Ballinhassig, Co. and if 2d is the distance between these points, an easy cal-
Cork, in the 1830s. There are, however, no written records culation using Egn (2) shows that

to support these claims.
) 2.32 i
! gd = ucosa(u’sinfa - 2gh) (3)

The first official attempt . was in 1955 when a crowd of

over 6,000 spectators gathered to witness eleven competitors Eqn (3) defines u as a real function of a since the exp-

endeavouring to "loft the viaduct'. Amongst them were the ression under the radical is always positive. The value of

famous Barry brothers from Cork, Mick and Ned, the former being a which gives the least value of u may be obtained most easily

regarded as the greatest bouler of all time. Both brothers by re-writing (3) in the form

succeeded in hitting the upper part of the framework with a
- . u'cos'a - u?(u? - 2gh)cos?a + g?d? = 0 (&)
28 o0z. bowl, but failed to get it over.

and noting that Egn (4) will have equal roots in cos?a if

In August 1985 interest was again renewed in the event u? = 2g(htd). But this is precisely the condition that u be
when a well-known Cork brewery offered £5,000 for what had by minimum and since u?> 2gh, this minimum value is given by ’
now come to be regarded as a superhuman sporting feat - the
lofting of the viaduct with a 28 oz. bowl. Shortly after . u? = 2g(h + d)° (5)

this, in fact on September 8th, 1985, history was made when

The correspanding value of o i obtained fr £ 4
before a crowd of almost 10,000 spectators a 23-year-old German P ° s ne om Eqn (4) in the

orm
Hans Bohlken, succeeded in doing exactly that. Bohlken used
a ramp, which apparently is standard practice in German bowling costa = ACE] or sin?a = E%E—%—%y (8)

and made himself £5,000 richer in the process.

If x, and x, + 2d are the two roots of Ean (2), then

Th ti f lofti th iaduct ith i .
e gquestion © ofting e viaduct wi a minimum amount using Egn (B) and the familiar formula for the roots of a

of effort gives rise to an interesting problem in mechanics. . .
quadratic equation gives
It is well known that the path of a projectile moving under

2
gravity only is a parabola whose equation can take the form X + d = %E-Sinacos(x = /d(2h + d) (7)
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Equations (5), (6) and (7) are directly applicable to the

viaduct problem upon taking h = 90 feet, 2d = 21 feet and
al velocity which is automatically communicated to

g = 32.10 ft/sec?. The values obtalined are ates vertic
the bowl and makes it easier to attain the component usina
u = 80,4 ft/sec, a= 76.79°9, x = 34.2 ft, (8) - which is required by Eqn (8). On the other hand, there is
doubt that to loft from a ramp requires an extra degree of
where x, is the distance from the viaduct at which the loft no gou ,
; skill to use the ramp effectively. In fact, Bohlken has been
should be made (the value of 45 feet quoted in the Cork Exam- . [ . .
described as having an/"incredible technique".

iner, 1977, is measured from the centre of the viaduct). ¢

/
' It seems :easonaély certain that further attempts will

///’ﬁﬁ\\\\ be made at loFting the viaduct.

N
! Depantment of fluthemat ical Physics,
Univensity College,
Conk.
a9o!
80.4 ft/sec
21 T
76.8°
~
v

—34,2'—

Regrettably, the use of a ramp by the German victor has
given rise to some controversy. Since, however, the height
of the ramp is small compared to the height of the viaduct,
the overall results in (B) would be largely unchanged. A

much more important factor is that running up the ramp gener-
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WHAT IS A PROBABILISTIC PROOF? where x > 0 is a parameter. It is not immediately obvious

Paul MleGilld that

a, ¥ 9y = ey - (t)

This note is aimed at those who ask naive, and sometimes
not so naive, questions about 'probability'. I try to give with * denoting convolution. So we see that an analytic
. i i 1 f
the flavour of the approach. For that is what it is. A way iproof of (t) is tﬁe c%ﬂputatlon of the Laplace Transform of
of looking at problems 'probabilistically'. _ig,, the result being ¢
o o
[ B—Atq (t)dt = e~ 2Ax'

0

probabilistic arguments arise in all sorts of different !
situations, For example one comes across them in combinator- jand NOU the answer is clear.,
ics, statistical physics, differential geometry, and especially | yependent random variables then the law of their sum is given
It is this last that I shall concentrate on, in |y the convolution of the separate laws (we conveniently omit
Hence a probabilistic proof of (t) is possible

But recall that if we add two

in analysis.
an attempt to clarify the difference between a probabilistic the prooF!)-

and an analytic proof of the same result. One confusion is {f one can find two independent random variables H  and Hy'

‘such that Hx + Hy = H , where HZ has law a, for all z > 0.

that an analytic proof for one person may be a probabilistic Xty

proof to another. My definition is the very purest of all.

Namely that a probabilistic proof is one which is motivated in g5 there it is.
‘appropriate probabilistic setting in which the result will be

All that needs to be done is to find the

terms of the sample path (or individual trial).

- agbvious. To set up the answer we digress a little, and intro-
I have found it helpful to think of 'probability' as a ‘idUCE the currently fashionable theory of martingales,
factorisation, :
Problem++ Probabilistic Formulation F+E Solution | Example 2. Suppose that xn is a sequence of i.i.d. (indepen-
._ident identically distributed) random variables such that X1
where E is of course the expectation operator.  So, roughly ihas values t1 with P[X, = 1] = p. We defin€ the simple random

one argues in terms of the sample path, then integ-  jwalk as s = Z?ﬂ X One of the things to notice about this

speaking,
the definition is sequential. Thus we define the

rates to obtain the {analytic) answer. It is not claimed that |is the way

this factoring is the easiest solution, but rather that it is ) sum s when we have observed the variables X1, X2, e Xn al-

ready. One thinks of this as tossing a (biased) coin succ~-

sometimes more ‘'intuitive!' (whatever that means) or maybe more °
essively, and the picture is one of dynamic probability (the

tnatural'.
universe unfolding, etc.). It is natural from this point of
Example 1. Consider the probability density in t view to think not just of the process Sh itself, but of the
’ pailr consisting of the process Sh and the information which
X x? it has accumulated up to the time n, which we represent by the
a(t) = /___——?*exp{—ﬁ} (t > 0) P p y
2nt g-algebra Sn = o[X1,X2,...,xn). Now THINK. Suppose we are
betting on the value of St Clearly it is more advantageous
. to know the value of Sh-1 than it is to know that sg = 0.
- 40 - ; '
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On the basis of 'latest is best' (intuition!) we agree that

_ - In words: 'averaging M_ over members af 7 yields m '
E[snlsn_1] = E[bn'Sn_1]. n m m

. The
only way to understand this definition is to work with it,
and by definitiaon We do this later on.

But for the moment be content with a
“few examples.
E[snlsn-1] = s 4+ E[ansn_1] = s 4+ (2p - 1),

7

?

!

Iterating one obtains Examples 3 ‘

]
that th ili i

Els - (2p - 1)s. |S ] =s - (2p - 1)m. (m < n) » (28) Suppose that thé probability space is ([0,1],2,m) where

n n'Tm® T Tm B is the Borel o-algebra and m is Lebesgue measure.

We have written it in this way to emphasise that the process the sequence of Rademacher functions Fn

Consider
[
(new word!) s,

= sgn(sin2™mx), each

- (2p - 1)n is stable under the operation of We define g, almost everywhere by

of which has mean zero.
taking the conditional expectation.

Before leaving this exam-

=0
ple we introduce the naotion of alrandaom time. Consider the %
first time T, that the random walk goes strictly positive 9, = 1[0 3] - 1[£ 1 - F1
(sometimes called the hitting time of 1). Then we might be 3 ' 1'
; : - - .3 v 1 1 3 e e
interested in computing the distribution of Tqe The question 9, 7 '[0,4] Z2'(4,4] 21[5’2] 21[2’1] =94 + 2 FZ
is how. i '

Definitions (1)

« s e o

An increasing family Fn of O-algebras of
events in a probability space is called a filtration. (
The general formula being 9, = 9,.q + 2" n‘1)f .

- n- n
Let Foo= o{fi 1 51 5 n}.

(2) A sequence of random variables Xn is said to be adapted

Up to null sets 7 is just unions
to 7, if each X is measurable w.r.t. 7 of the dyadic intervals ([k2™", (k+1)2°"] : 0 5 k 5 2" - 1}
Then
Thus 'adapted’ has connotations of being observable in

Elg |7 ] = + 2-(n-1)
the filtration at the appropriate time. The filtration Sn ‘ g”' n-1 In-1 E[fnlfn-1]

defined in Example 2 above is called the natural filtration
of the random walk s

% 941

! so by induction 9,
i
n*

{(b) IF X is an integrable random variable (so that ane can

: define conditional expectations) then the sequence ' i
adapted and stable under the conditional expectation operation,!

i.e. } ‘ Xo = ElX]7] | J
!

is an fn bounded martingale.

A martingale Mn in the filtration fn is a process which is

- is a martingale in th fil i
E[Mnlfh] = M. (m < n) e filtration 7n

\
. This is an example
of a closed martingale,

Recall how this means that E[Mn1A] = E[Mm1A] for every A € Font

i K
- 42 -
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pe a random walk whose i.i.d. steps are now nor-

{(c) Let v,
mal N{0O,1). By using the formula
” z At
Vﬁl? exp (- %f + VZAx}dx = e
m
one sees that efo/Eiun - An} is a martingale for the natural

filtration of U«

! I .
Definition An integer-valued random variable T 20 is said
to be a stopping time for the filtration 7 if (T = n) € }n

for all n 2z 0.

The first passage time T defined in Example 2 is

Example 4
To ses why note that .

a stopping time for the filtration Sn'
<1, s, = 1} € Sn

Thus a stopping time is one which can be observed 'as soon
Notice that the last zero before time 11
Both of these

as it happens'.

s N
cannot . Nor can the minimum before T,.

facts are alltoo familiar to gamblers.

The most important thing about martingales is not so
much the celebrated martingale convergence theorem, but rather
the fact that the definition can be made to work for stopping
Notice that, by definition of the conditional

times also.

expectation, if M is a martingale then gfm 1 = elmgl.

Doab's Optional Stopping Theorem If m_ is an Fn martingale

which is uniformly bounded up to the Fn stopping time T then

elm] = €lmgl.
Let us now construct a martingale which gives us the iaw of
: n
T We will look for a function f such that M = e F(sn)
is a martingale (for the natural filtration Sn of Sn)' Let
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us suppose that F(x) = e**. Then computing the conditional

expectation we have

E[r(sn)e'xnlsn_1] = e'}‘(n'1)eu5““1[peu + e M1 - p)le?

From .which the condition for a martingale is that

f
/ -
fex = pe! + (1 - p)e [

/
[

This is a quadratic equation in eu, with two solutions. We

want our mértingale to be bounded up to the time 1, so choose

(fFor p > 0) the positive square root

eA + eZA-

2p

4 -
u o= “(A) = log p(1 p) .

With this choice of u we can apply the Doaob Theorem at the
stopping time T and get

- AT, + uUS
Ele ! 11 = 1
Notice how we ignore the set{T1 = + =} since the martingale
is zero there. But if {11 < +e) then 511 = 1 and so
E[e'AT1] = e H(M) From this information we make various
computations. Note that
+ -
pu(0) = log 1 2 1
2p

which gives P[T1 < tw] = E—u(D) = (p/(p-1)) A 1. I1f we look

at the (interesting) balanced case p = % then we compute that
1
- AT  ———
Ele 1 =
[ ] eA + eZA -1

so by differentiation, putting X = 0, we get E[11] = 4o,
Thus the expected waiting time for first positive passage is

infinite, although the time itself is finite.

This is an example of the probabilistic method. It 1is
clearly formulated in terms of the sample path, and in the

end the answer comes by taking an expectation.
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Important Remark

The boundedness condition in Doob's Theorem

is essential. Consider the example of the simple random

walk when p = 1/2. Then T,l is a stopping time but we have

1 = E[sT1] # Elsgl = 0.

We are‘now ready to finish off this circle of ideas. We
begin with the martingale of Example 3(c) above

m, = exp[/fiun - Anl.
of this martingale Mt = exp[/?lBt - At), where Bt is called

Brounian motion (and we take BD =0 here).

There is a continuous time analogue

There are two
structural facts that we need, both of them difficult te prove.

(1) The process B varies continuously with time. This res-
ult is due to Wiener.
To state the second one we define the random time
T, = inflt >0 : B = x) .
(2) (By ¢ - x 3 t 2 0} is a process with the same lau as
X

B, which is independent of the process B . This
t Tyt

is a particular case of the strong Markov property.

It is a FACT that we can apply the Doob theorem at time

Tx to the martingale Mt. Which gives us

E[mT ] = E[ND] =1 = E[exp(JEXBT - XTX}]
X X
But using (1) By = x (at least when T, is finite) so we get
« ;
E[e~XTx] e_/?xx

Going back to Example 1 we find that Tx has law Q- But nouw

(2) shous that fy = inf{t > 0O : Bros¢ - % y} has the same :
X

law as Ty' while at the same time being independent of Tx'

Since we have the sample path identity
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the conclusion a, X qy = q is immediate,.

X+y

As we have written it here the probabilistic proof seems

to depend on the analytic proof. However one can see that

T_ has law a, directly, by using (2) and the reflection arg-
poX I ’ 4 i . . N

ument of Desire Andre. /This reasoning is too subtle for the
rasual reader. {

Jl
In conclusiﬁn we point out how this typifies the ingred-
jents of a probabilistic proof. It is certainly harder than

the original, but has an undeniable charm and utility since

“fwe have a diagram for 'why' the result holds.

1Depantment of Mathemat ics,
iflaynovoth College,
Co, Kildane




CONVEXITY AND SUBHARMONIC FUNCTIONS

Stephen Gandinen

Thi i :
0 mhigssn:::;;:eoilves a ?imple account of some of the ways
harmonic Function convexity are related to the study of sub-
inelused in Lho d?. S?ueral recent results in this area are
siven ot the o iscussion. The article is based on a lecture
ecember 1985 meeting of the DIAS Mathematical Sym-

posium.

1. Notation

We shall be concerned wit EUCllUEEH space IR (H 2 2)
?

points of \UlllCll are de oted b)/ X = (X1, PRy Xn). We wr ite
X = X + . + and de ote t d radit I
l ‘ ( 1 ° X_) »
\ he ope b [s] rad S
centred at b)’ B(X,l‘). e Cleure and bOU“daI‘y a a subset

£ of R" wi
will be denoted respectively by E and ok

2. Harmonic Functions

A unction u on a oper subset w a IR 1s called 'IaImQ”lC
if it is twice CDIItllIUOUSly dl"EIE tlable and satis ies Lap-

1 .
lace's equation:

2%y 2
ax2 t oo + 2 g 0.
1 Ix

(Harmoni i ,
Stati:gjch:::SSL:ns.arlse naturally in gravitation, electro-
Mlternatively, :E::fcs and the theory of analyt{c functions),
the sphere 38(x O ;:9 m(u,xir) denote the mean value of U aver
in 6 if ang l’ ) enever B(X,r) C wy, a function u is harmoni
only if: ic

(1) -w < u < +w in w;
(ii) u is continuous in w;

(1i1) 8(X, 1)  w =ul(X) = m(u,X,r).
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3. Subharmonic Functions

By subdividing (i) - (iii) above we arrive at the dual

notions of sub- and superharmonicity.

SUBHARMONIC FUNCTION

(u £ -» on any component of wls

(ia) -« $u < 4+ in w
(iia) u is upper gemicontinuous (u.s.c.), i.e.
(X € w: u@&) < a) is open Va e IR;
(iiia) B(xst) @ w= u(x) s Mlu,X,r).
SUPERHARMONIC FUNCTION
(ib) =~ < u 5 += in w [u £ += on any component of wls
(iib) u is lower semicontinuous, i.e. {(x e w: u(x) > al
is open Va € IR;
(1iib) B(x,r) < w = u(X) z Mm{u,X,t)
Such functions arise naturally in many situations. For

example, if f is analytic in €, then log‘f| is subharmonic.
Again, the gravitational potential energy due to a mass dis-
We can immediately make the foll-

tribution is superharmonic.
owing observations:

¢ if and only if -u is superharmonic;

(1) wu is subharmoni
(11) wu is harmonic if and only if both u and -u are sub-
harmonics
(111) if u,v, are subharmonic and a,b > 0, then au + bv

is subharmonic.

An equivalent formulation of the definition of a subhar-
monic function is obtained if we replace (iiia) above by:

for any open set W with compact closure in W, and

n U which is harmanic

(1iia')

for any continuous function h o
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in W and satisfies h 2 u on 3W, we have h 2 u in W.

It is this condition which accounts for the name subhar-

monic.

4. One-Dimensianal Potential Theory

Laplace's equation for the real line is simply d?u/dx?:= 0,
so that harmonic functions are just linear functions of the
form ax + b (a,b € R).

cept of a subharmonic function on a subset of IR is equivalent

In view of (iiia') above, the con-
to the idea of a convex function. Thus subharmenic functions
are a generalization to higher dimensions of convex functions.
This explains why notions of convexity recur so frequently in

the study of subharmonic functions.

5. Spherical Means

Spherical means of functions have played a fundamental
role in potential theory since the pioneering work of F. Riesz
[6] in 1926.

as a function of r.

It is natural to consider how M(u,X,r) behaves
Riesz showed that, if n = 2, then M(u,X,r)
is convex as a function of log r and, if n 2 3, then M(u,X,r)
is convex as a function of rZ-n. The functions log|X| (n = 2)
and IXIZ_F| (n 2 3) arise as solutions of Laplace's equation

in R N\ (0},

Thus, when we modify a subharmonic function (by taking
its mean over a sphere of radius r and fixed centre) so that
it depends only on one variable (r), convex functions reappear.
It is worth pointing out that the same convexity properties
hold for

sup{u{Y) ¢« |y - x| =}, 1log m(eY,X,r), and

(N(up,x.r)]1/p for u 2 0 and p > 1.

6. Composition Properties

If we begin with functions of one real variable, we can

make'the following simple observations of functions:

[Convex] o [tinear] = [Convex]

[Increasing Conve}] o [Convex] = [Conuex].

('Increasing' is to be inﬂerpreted in the wide sense, i.e.
: 7
non-decreasing). /It is well known that these properties carry

across to higher dimensions as follows:

[Convex] o [Harmonic] = [Subharmanic) (1)

[Increasing] o [Subharmonic] = {Subharmonic]. (2)

However, it has only recently (see [3], [5]) been noticed that
this is a special case of the more general, but equally elem-

entary, result stated below (For applications, see [3]).

THEOREM 1. The function v¢{u/v) is subharmonic in each of

the following cases:

(i) w is harmonic, v is positive and harmonic, ¢ is convexj

(ii) wu is subharmonic, v is positive and harmonic, ¢ is
convex and increasing;
(iii) wu is subharmonic, v is positive and superharmonic,

¢ is convex, increasing, and ¢(x) = 0 for x s 0.

By taking v = 1, it is clear that (i) and (ii) include
(1) and (2) above.
it below.

The proof is gquite short and we outline

LEMMA 1. if (ua :a € I) is a family of subharmonic functions

on w and sup u, is u.s.c. and less than +o, then sup Uy is sub- .
a a

harmonic in w.




Proof of Lemma: E(X,r)c:(u=$u8 s N(UB,X,r) s M(sup uq.x,r)
o

:#sgp Y, s M(sgp uu,Xyr):

so sup U, satisfies conditions (ia) - (iiia) of Section 3.
o

Sketch Proof of Theorem: Corresponding to each part of the

theorem, ¢ can be written as:

N

(i) &(x) = suplax + b : a,b € IR s.t. at + b = ¢(t) Vte by |
(ii) o(x) = suplax + b 3 a 2 0, b € IR s.t, at + b 3 o(t) ]
Yt € R};

(1ii) ¢(x) = suplax + b : a 2 0, b =0 s.t. at + b s o(t)
Yt € IR).

Thus vé¢(u/v) can be written as

sup via(u/v) + b] = sup [au + bv]
a,b a,b

and au + bv is subharmonic for the appropriate values a,b in

each of the three cases. It is quite easy to check that

v¢{u/v) is u.s.c., and clearly vé(u/v) < +w, so the result nou

follows from Lemma 1.

Remark: Theorem 1 and its proof transfer easily to the axiom-
atic setting of harmonic spaces, and so can be applied to sub-’
solutions of a wide class of elliptic and parabolic p.d.e.'s
This is particularly interesting because (1) and (2) do not
hold for harmonic spaces, the reason being that the constant

function 1 is not necessarily harmanic in the general setting.

7. Convex Domains

tet 0 £ IR" be a domain (connected, non-empty open set)
in R", and . let u be the signed distance function given by
~dist(x, Q) if xe @
u(x) = n. =
dist(x, @) ifF X € R N\ Q,
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The following recent result is due to Armitage and Kuran [11]).

THEQREM 2. The function u is subharmonic in R" if and only

if the domain Q is convex.

The "if" part of the result is straightforward and was

already known, at least'lmpllCltly. For example, when n = 2,

jet L denote an arbltrdry straight line a xq + bez = ¢ in
n: N 9, (a1.+ bf = 1), and let u be the signed distance func-
tion from L given by u, = i(aLx1 + b x, - cL), the sign being

chosen so that ug <0 in Q. Since each uL is harmonic,

u = Sup up and u is real-valued and continuous, it follows from

Lemma 1 that u is subharmonic in Rr"

The "anly if" part requires a longer argument and is gen-

uinely new. A surprising fact about this result is that more

can be said when n = 2:

THEOREM 3. The function u is subharmonic in — R? if ang

only if @ is convex.

Armitage and Kuran give a counterexample to shouw that
Theorem 3 Fails in higher dimensions. 'For example, when
n=23, let Q be the torus obtained by rotating the disc

= ((o, P e Xy ) e (x2 - 2)% 4+ xg < 1} about the xa-axis. Then
it can be shown that u is subharmonic in Q yet Q is clearly

not convex.

8. Generalized Means

Convexity properties of spherical means of subharmonic
functions (Section 5) have analogues for "weighted means" of
such functions over other surfaces. Ta take a simple example,
if u is subharmonic in the upper half-plane’{(x1,x2) Poxy > 0}

and u s 0 on the x,-axis, then (using polar coordinates)

1
1 (T

r- J sin 6 u(r,6)de
0
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. -2
is convex as a function of v ~.

More generally, various authors over the past 15 years
have shown convexity properties for weighted means over the
boundaries of half-balls and truncated cones (of varying raditi)
and bounded cylinders (of varying height or varying radii).

In fact, these separate studies have recently ([4]) been unif-
jed into a general convexity theorem. The general mean is
defined in terms of harmonic measure, and fhe surface over which
it is defined is obtained as the level surface of the quotient
of two harmonic functions. For example, in the above case

of the half-plane, the appropriate harmonic functions are X5

and xzr_z, so the semi-circular means arise as integrals over

level surfaces of =2 and convexity is in terms of 2,

Finally, we remark that convexity properties are not con-
fined to integrals of subharmonic functions over bounded sur-
faces, for (see [2]}, for example) if u 2 0 is subharmonic on
r"1 o« (a,b) and does not grow "too quickly" as |x] becomes

large, then

X, Ln_1u(x)dx1dx2 cor OX g (a < x < b)

is a convex function provided it is finite on a dense subset
of (a,b).
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CAYLEY: GROUP THEORY BY COMPUTER

Putaick Fitzpataick

INTRODUCTION

CAYLEY is a sophisticated programﬁing language for work-
ing with algebraic structures. Its principal domain is in
the area of group theory but it may also be applied to rings,
fields, modules and vector spaces. Not only does it contain
a large compendium of prepraogrammed group theoretical algorithms
but also it provides the user with the f§cility to write and
develop new programs. Cayley has taken up residénce on the
VAX 11/785 at UCG and is therefore accessible to group theoar-

ists throughout the country via the Higher Education Authority's
network HEANET.

The purpose of this note is to give the reader a brief
introduction to the main elements of Cayley and to provide a
few examples to illustrate the power of the language. We
avoid detailed technical discussion of syntax and format and
make no claim to be comprehensive; rather it is our aim to
whet the reader's appetite for "hands on" experience. Com-
plete information on the current version of Cayley may be

found in [1] and its updates (see alsao [21]).

pDefinition and Manipulation of Groups
There are various ways to define a group in Cayley: using
generators and relations, as a permutation group, and as a
matrix group. '
gxample (a) The program segment
dih4 ¢+ Cree (a,bli

dih4.relations : at2 = b12 = (a*b)t4 = 1

F}nancial assistance from the Faculty of Arts, UCC, is gratefully acknow-
ledged.
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ral group of order B8 giving it

defines the dihed
the name dihé.

(b) The program

g ¢ permutation group(8J)3

g.gcncrquﬂs : (142,3) (4:5:6)s (1,3,8)1

{

defines g as the subgroup of Sym(B) generated

b& the given three elements.

(¢) To define the group of 2x2 matrices of determinant

1 over GF(3) and call it 5123 we need:

k @ field(3)1

v @ vector space (2.k)1

5123 3 matrix group (v)i

s123.gencrators & X = (1,1) =+ 0.1)0 ¥y = (1,0 ¢ 14,103

The generating matrices are

1 1 1 0
and .
0 1 1 1

Observe that each Cayley statement ends with a semicolon and

ction is made between upper an
sed for clarity in pro-

that no distin d lower case let-

ters (although they may of course be U

Also note that the symbol t may be ~ on some ter-

gramming).

minals.

Elements are defined and manipulated in the obvious ways.

Thus if u and v are preuiously defined elements of some group

then
. ut?2 * vi-b, (urvii) =1 and utv

- - v -1
represent the elements u?v v, (uv?) and u’ (=v uv) respect-
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>
]

i
vely. Furthermore the instruction

h = <u,v>;

delues h as the SUngOUD QenEIatE‘d by (U V). A lot i -
? o [e] n

ormation about a group g and its SUngDUpb a be obtained
8 y

using the PRINT command:

PRINT order(g), exponent(g), classes(g);

for example.,

STRUCTURED PROGRAMMING

progrS:;;s; ;: : Ziss—li:el la?guage which allows structured
Loment e @ p Eoret?c context, Thus we can imp-
g constructions:
(i) IF expression
THEN statements
[ELSE statements]
ENDy

(ii) FOR i = 1 ¢o 100 DO
Statements
END;

(iii) FOR EacH x IN s DO
statements
END;

(iv) wurLe expression DO
statements

END;

(v) REPEAT
Statements

WHILE expressiong
END;

denotes a variable which has the log-

Here the term cexpression
ical (Boolean) value true or false and in each of (iii) - (v)

the program continues as long as expression takes the value

Lrue. The consltructions are all subject to the usual con-

straints regarding their use in combinations such as nested

sequences . Other commands GOT0, LOOP and BREAK may be used
to transfer control from one part of a program to another.

The GOTO command has itsgﬁsual meaning while LOOP forces a

continuation of the nexg’cycle of a loop without carrying out

the remainder of the statements associated with it and BREAK

transfers control Lo the next statement after the END of the

loop. Use -of these constructions is particularly important

in minimising the execution time of a given program.

STANDARD FUNCTIONS

One of the aspects which makes Cayley such an attractive

working environment for the group theorist is the large lib-

rary of standard functions available. Many of the group

thearetic concepts that appear in everyday use are included:

normalizer, centralizer, normal closure, core, conjugacy

classes, generators, Sylow p-subgroup, upper and louwer cen-

tral series, derived and Frattini series, orbit, block, stab-

ilizer for example. An expression of the form
normalizer(G,H)

represents the group NG(H) and can be used as it stands in

a program. Some of the standard functions are restricted

‘to groups defined in certain ways, but even these limitations

can often be overcame bLY judicious programming.

In addition to the standard functions represented by key-

words Lhere are also built into Cayley several standard group

theoretical algorithms for working with finitely presented
the Todd-Coxeter, Nilpotent Quotient

groups: for instance,
are included. A recent

and Reidemeister-Schreier algorithms
addition to the supply of programs available constructs the
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finite si
simple groups of order <10°% both as permutati
ation groups

and by generators and relations

LIBRARY PROGRAMS

As soon

as ane hegllls to de\/b‘lop programs in CBYIE)’ it

m pe ative S [v] s and sub
beccomes 1m T to tore a d edit program n routines
(OI pr )’1 Y )‘

ocedures as Ca e Calls them This 1is achleved thr-

ough th i
e use of a library file which has the form

LIBRARY name
statements

FINISH

Before enteri
Lo G ing the Cayley environment (for which th
2 . e
\e programmer creates a library (or recall conmand
alls one crea-

ed .

at a pl‘BV].OUS workir g s 5510 ) or 1

t . e n F gxample
PLIB 8r OUPS/C

S P u y af d all t ! Creatir -
1i r calls 1 groups rea
ets u such a bra . ing a lib

rary ile ca led rin and 1 isertirs 9 it in roups requlres
ADD permgp

1 1 Y q t P

The writer then edits the file n the usual wa usin he ed

tor on the host machine. On exil r Y Y -
xit fromn the edito Cayle con

veniently prompts
Add problem to library (Y/N)?

(It calls 1i
ibrary files
problem. files ) Modi
. odificatiaon can b
e

achieved by
MOD permgp

whict extracts the file
rom the librar and allouws it to be
M
Edlted. In order to run permgp Lhe user enters Ca le and
Y y
LIBRARY permgpt

- 60 -

lines

jtial and final

s between the in

e the statement
t is necessary to

the file again i
) and then MOD again.

will execut

of the file. To change

m Cayley (using QUIT;

exit fro

AN EXAMPLE

Given a finite group 9

ubnormal in Q’an

f sub'roups
P

and 3 subgroup H determine whether

or not H is s d if it is find its defect. We
count the sequence O

HG" Gz=H » PR

6 = G, G1 =

rminates in H or stabilizes

the keyword normal
ue of nesting.

determine whether this series te

raup.
11ustraté be
v) takes the Boolea
otherwlse.
defect. Text

and
at some larger subg
in order to i

we avoid using
tter the technia
n value true

The com-

closure
The expresslon invariant (U,
v and false
brary file called
ks is regarde

f the program

} subgroup of

placed in a 1i
n mart

if U is @ norma

plete program is
double quotatin d as comments

A detailed 1isting ©

entered within
y Cayley:
he appendix.

and ignored b

is given in t

HEANET
of using

network aspect
HEANET connects UCG,
Local

« briefly at the
time of writing

NIHE (Limerick).
rder to avail

Finally we lo0

ley at ucG. At the
NIHE (Dublin) and

ssion is obviousl
addition the prospectiv
e from the Compu

Cay
ycc, Uco, 1CD,

advice and permi y required in o

of the network and in e user will req-
n and assistantc
to obtain 2 spec
alls UCG

ter Centre at

uire permisslu
jal comma

uce (in particular

In practice the user €

s if his termina
nd then reverse

1 were connecte
s the

Cayley)-

terminal,
. arries out his W
‘ connection.

logs ©nN there a
orking sgssion @
In the interests ©

ne spent working with

ectlys €
to break the
o minimise the tiv
e achieved by writ

procedure

L is important t
ing all

omy 1
the n

etuork connected. This can b

- Bl -

nd file for running

via his oun computer
d dir-

f econ-




1 machine and using

jles in the loca
d them fully written

library fFiles as text f
the TRANSFER pption on
to UCG. Illustrating with the exampl
n the user would then have 2 file defect.tXxt in hi

the netwotk to sen
e of the previous sect-

io

at UCG. The command

L[HRARY/TEXT/LOG GROUPS defect.txt

art of yAX/Ums not Cayley) will then

(which is incidentallY P
file in the library groups-

insert the file as a library

CONCLUDING REMARKS

is no doubt that t y does not pro-

loit fully

his prief summar

There
the readerT to exp

cient information for
it will serve as

ever 1 hope that
1 will be happy to corr-

interested and Ted

vide suffi
the power of Cayley. How
diments.
one who 1s
s willing to help out
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s directory
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. find its defect"

APPENDIX

library defects
ndetermine whether a subgroup H is subnormal in a group G and if it is

print 'the group should be called G and the subgroup H'3

print G,

u=G3

defect=03

notdone = truei i
whotdone is true until the squtnce

G0 = G, Gl = H*G, G2 7 H G1l, +oo
stabilises" b
while notdone do /j

V=H3

notnorm = truej
#potnorm is true until the subgroup Y is normal in u"

while notnorm do
for each x in generators(v) do
for each y in generators(U) do

end;
if invariant(U,V) then
notnorm = false;
end;
end;

ends;
wif y=u then sequence has stopped 8t @ subgroup contalning H strictly,

1f v=H then sequence has reached H,
otherwise continue"

if V eq U then

breal;
else

if Vv eqH then

notdone = false}

end;
ends
defect = defect+1}
u=Vs;

end;
otherwise H 1s (sub)notmal“ :

wif notdone=true then the loop was broken,

if notdone then
print tthe subgroup is not subnormal';
|

else-
if defect eq 1 then
print tthe subgyroup is normal's ‘
else |
print 'the subgroup is subnormal with defect's ‘
defects
end;
end;
finish;
: - B3 -




ON TEACIHING MATRIX ALGEBRA BY COMPUTER

Bol Cnitchfey and Goadon S. Lesseldls

Si i i
L) nce 1983, an experiment 1in computer-assisted learning
ha i
: s been running at NIHE, Limerick, whereby students an
various
courses have had the opportunity of learning the basics

of Matrix Algebra at a computer terminal

Origins

In 198 j

- compani,(:Figz;jc;aiuzziduby ?hannon free Airport Develop-
, based

CAL package called "Costing forpSmall Buzznz::i: t?T::ea:e )

df the project were (1) to investigate the potential fo: EZL

in management and third-level education and (2) to decid

the feasibility of setting up a company to produce CAL sEF:n

ware: A NIHE initiated project, viz. to create a CAL ook

age in Matrix Algebra, was chosen to run in conjunotionpizt;

"Costing for Small Business".

System

Cor trol Data EDrpOIatloll (CDC) ave been llEaVlly lll\/OlVEd
witlt CQHpUtEr-baSEd education Us.i.llg the PLATO s stem in he
Y t
Ulllted States. The cDC-1 0 star d-alolle mlcroco Iputer-based
3y5t9| was chosen for the p[OdUCtiDII of both our courses.
In 1983, the cDC-1 0 SYStEH allohled the Cteatloll of lessons

according to three different models:

(1) Tutorial Learning Model (TLM)
(2) Drill and Practice Model (pPm)
(3) Situation Simulation Model (SSM)

The lutorlal Learnit Model was CIOSESt to the lecture tutoxia
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By means

[ COUTSE.
em a lesson could be created as @ sequence
the underlying micro-TUTDR Janguage.

tery of the command language was almost

style of teaching and was chosen for ou

of a menu-driven syst
of frames without using

HoweveT, acquiring @ mas

rning a new programming language.

equivalent to lea

!
1

Creation i

(
Yics students, Don
cement, were employed

Two Applied Mathema al Crosse and David'

ative Education pla

Nash, oan their Cozyoper
s to assist us in

d of six montl

by the project for a perio
al material was written

creating the CAL package.
with the design and la
The material was written in an inter-
he attention of students.
touch-sensit-

The textu
by ourselves: yout of the frames carried
out by Donal and Dave.

active sblyle in order to retain il
re able to take advantage of the

nfront the student with a large

re built up gradually,
Questions

To this end we we

jve screen. In order not to co

aterial at once, frames we
from the student to proceed.

erent material accor

quantity of m
requiring 2 Key press

could also be followed by diff
By suitable highllghting and animation it

e student's attention at the des-
extual material

ding to the

response given.
pinpoint th
the screen thus giving the t
a programmed learning text.

was possible to
jred section of
more life than, say»
ct was a 1esson of about six hours

The finished produ
tions (1) Matrix Baslcs, (2)

dguration comprising three sec
f Matrices, (3) Mu
A student is routed through the course having to pass a crit-
nd of each subsection to allow him/her to
est gives the student the

Linear Combinations o

erion test at the e

Failure of a criterion t

proceed.
ubsection or reviewing back-up

agption of redoing the previous S
king a neu criterion test. Records of time

in the tests are

material before ta
kept by the computer.

spent and performance

in all there were about 600 frames,

fraction of the total.
f the wlearning curve"

only see 3 A breakdown of the devel-

ne with evidence O is given

apment tis
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1tiplication of Matrices.

although each student would




below.
(2]
~
o~
0 wn
P I
E n
I
<
wn 5 m
9 el 8 "’
~ M —
n o~
" w m 0] = (';
- ] = = o~
= it - " = F
w [ Lo : X
- w
Section » -
1 Section 2 Section 3

T -
DT Total Development Time (hours)
TT - Terminal Time (hours)

F - Number of Frames

Reactions to Course

s a T P im L ’ Tl 9] n
A first exper ent n CA mat x algebra was ound

to be a v i
ery suitable topic for a number of reason
S

(l) he t;Op]-c is widel taUQlt t||10U9| out the nstitute and
y 1
can be taugllt llIdEDEIIdBHt of appllcatlons. The same
caurse can therefore be used b both en neering a vd
’ ’ y 91

business students.

( )
2 The DIeIEquSltES were lllllinal, bEL(Ig a knomledge of

Leaving Certificate pass level algebra

(3) The i
material lent itself to visual presentati
use of b . :
lackboard and chalk is awkward when larg o
e mat-

rices are involved.

(‘I) The m i
aterial involved
. understandin
g concepts as well a
s
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ating skills.

acquiring calcul

gauged by means of

nts to the course was
f the observed ben

Some O

Reaction of stude
efits

interviews and questionnaires.
were:

ﬂ1). students could go at;their own pace.
(2) 12-hour access to tQ@ computers allouwed students to choose

thelr own study tiqﬁs.
o felt that the inte
to learn petter

(3) Some studenﬁg als ractive nature of
than by tradit-

the course allowed them

jonal methods.

¢ were moTe concerned about

On the debit side, some student

a tutor whereas other students were more con-

the absence of
allure

cerned about rep
in a criterion test.
cated that the course
Algebra. we do,
jtable for 2 limited
probability,

nvestigation.

etition of the same material because of f

Various test

s and subsequent exam res-

ults have indi provided a good foundation
for further work on Matrix however, believe

L approach is only su

number

that the CA

f mathematics, more matrices,

vectors,

of areas ©
tions for possible i

graph theory being four sugges

coc - DEC
The original cpC system had a number of disadvantages:

(1) The lesson models were too restrictives
(2) The use of floppy disks was unsuitable foT use by large

numbers.

(3) The system was slow and noisy.

(4) CustomeTl service was poor.

patible with other micros.

(5) The system was incom
the institute has adopted the

and other reasons,
n's DEC PRODUCER system for its

For these
quipment Corporatio

Digital E
- 67 -




CAL laboratory.

- The original course has been reprogrammed
and is now available incolour to students on DEC PRO-350

microcomputers or DEC UT 220 terminals linked to a Microvax 11

The i i
increased computing power has reduced the time taken by

stud i
udents and the greater availability has meant that large

classes
can now be accommodated. Anyone interested in seeing

(or purchaslng!) the course should contact the authors

Finally, we wish to acknowledge the assistanc
Smyth, Dr Mark Burke, Eamonn Murphy,

e of Dr Joe
mary Davern, Anna Kin-

s
ella and Brenda Sugrue who have all made valuable contribut

jons along the way.

Applicd flathematics Depantment,

Nalional Institute fon llighea Educalion,
Limenick.
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as early as possible.

Forms are available from the Treasurer.
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UNDERGRADUATE PROJECTS IN GROUP THEORY:
AUTOMORPHISM GROUPS

7. Poaten

In wmy earlierT note [ﬁ], 1 described a project undertaken
3rd year student inﬁolving commutativity ratios. The

ded mere’an intuitive idea of a presentation

by a
pasic tools nee
of a group, and ‘some modular arithmetic. That project was

the equiualent of a half paper in the final examsS. The foll-

owing year the system was modified and projects were enlarged
so as to be equiualent to a full paperl in the final exams.
Here 1 will describe briefly a project involving calculation
of automorphism groups from a presentation. The groups
studied were the dihedral groups, which have a fairly easy

presentation readily available:

Dn = <XaY ¢ o=yt o= (xy)? = e> for n z 3

The idea of the project was as follows:
1f a: On * Dn is an automorphism then

alx) = x‘y
aly) = *xY

for some 0 = i,j s n-1 and 0 s J»& = 1 since‘any element of

Dn has a representation in the form xayb, with 0 s a < Ny

0 sb <2 I1f one wants to build automorphisms, therefore,
one may attempt to do so by picking ngyitable” i,diksRe of
course saying that a is 2 homomarphism and specifying a(x) and
aly) will say where each xayb is to go provided that the rel-

ations are compatible with the choice of i, 3ks2e By this

we mean that

i
[u]

V= e= (a(x))n - e that is (lej)n =

e that is (Xkyg)2 = e

1

y2 = e= (G(Y)>z
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Fan

and th i i iy d
e last relation implies (xlnykyl)2 = e,

As one knows that

(CDlllllg sl1lm f T Xy = e one can Sif Dl ly these express-
ply ro (
) )' i

ions to get relations between i, j, k and 2

Thus ]Ust using modular aritt “9th, one canh ider tlly which

1 ) k,% c re pOlld to P sm [¢3 erine n generators
RELY] or S an endomor hi ’ N o t

as above. ( e asic de ail y 1
b Th b t ed abstract theor behind this

depends on von Dyck's theor
Yy em, see Johnson [l] and was sumr

arised by the student n he dissertation. Now one has
1 r ) |

metely t .
o observe that an e ldOl'lOIplllSll a Dn + D is an auto
; n
P y ‘V
morphism if and onl if Ker a is trivial to have a method of

extract ng which ] k,% [o] pOlld to autom 1
1 1 (1, s 1<y ) corres orpnlisms
.

The i
problems in the modular arithmetic led the student
n

to reduce the DIleEl to the osel
cl Y related one of calculatirs g

( n) a enta or of
Aut(C for any LIy As the aim was to glve pres tati

“Ut(D ’ it was CIEaIIY insu ficient to note HEIEIY that
n)

( n) = the ring 7/nZ one
Aut(C Un the Abelian group of units in /
’

needed a i
presentation of Uph. A search through many group

the

rhow:s:rb?:E: 5:o?uced no easily readable discussion of this;

e acco:::us sources, the student pieced together a

- illustratin. In her write-up of this, she included
g some of the principal differences betweei

the various cas
es: for example n a
power of 2, n a
product of

o These tables listed explicit generat:
n) and presentations for all n up to 32

odd prime powers, etc.

Th '
e student then returned to studying Aut{Dp)
n’e

some he on usili
lp g Mathematical Reviews
»

with
the stud
seme hele on udent had found
o a paper by G.A. Miller [2] dealing precisel
ely

with automo i
rphisms of Dp. The solution of the problem f
or

( n) .
Aut(C cleared the way or findir a preseﬂ:at on fo Aut
9
1 r D
, . ( n)
That daone she found whic of the aUtO"OIp 11sms were nner.

At this PUi
nt a lscrepancy was notlcea e et lcu
d t b b ween her ca ]l -
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explare semi-direct products,

she found that D,y Dy and

which are their own gQroups
in this

ations and Mmiller's description.
Dy are the only dihedral groups,
miller only mentions O3 and D,

of automorphisms.
she found that there are only three dihedral

context. Again
groups (Duv DOs and Dg
phic to C,; Miller seems only to men
(For non-group theorists put(G) = Aut(G)/

) with outer automorphism group lsomor-
tion Dy and a metacyclic

group of order 20.
inn{G) is the outer aut#morphism group of G.)

!
¢

She contiqﬁed mith the study, giving explicit generators,

and presentations for Out(Dp) for all n, again tabulating the

results for o s 32.

n the project, it became useful to
parts of the theory of free

At various points i

groups (e.q9. Johnson [11, Ch. 1), inner and cuter autamorph-

isms of groups in general, holomarphs,
some of this material 1is usually

and some not so elem-

entary modular arithmetic.
act by group theorist
but here one was faced with a need

considered too abstr s to be introduced

in undergraduate COQULSES)

for certain terminology, notation and ideas to simplify the

description of Aut(Dn). perhaps this material is only viewed

as being too abstract because it is often presented without
ssary for the development or sim

wWhen one considered that it is this

it being nece plification of

a solution to a problem.

sort of situation that leads to neu jdeas and new concepts in

mathematics, it is worth wondering if a small change in emphasis

might not allow students sSome insight into the reason for the

wnenu" rather than being shoun only the nfinished meal® in

mathematics courses.

perhaps I should mention a slight disadvantage about pro-

jects of the form I have described in these two notes. After

a student has peen expose
\ studied, OT introduced, unless necessary

d to this sort of mathematics, where

cancepts are seldon

for further development, synthesis, simplification etc.y it

can happen that the usual style of lecture course seems tog them
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g gl i

hopelessly unmotivated, irrelevant and needlessly abstract.
Even though one might like all pure mathematics courses to be
presented in a better way, realistically one has to be cynical
and warn a student, who knows how to do mathematics, but not
necessarily how to remember unmotivated chunks of theory, that
not all lecture courses in group theory are presented in this
way. (I admit to exaggerating here to make a point, I

should also mention that group theory is probably not the worst
B4
offender in this way.)

Finally I would mention that another student, this year,
is attempting a similar analysis of automorphism groups of
dicyclic groups. Also a glance through some of the older
(pre 1930) group theory books provides same idea of the wealth
of material in this general area which may be useful when
planning out projects in group theory. (I suspect the same

is true for other areas as well but my personal experience of

projects has been more or less solely in this area.)
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BOOKS RECEIVED

“ NTRODUCTION TO DIFFERENTIAL GAMES AND CONTROL THEORY

By V.N. Lagunov

i ii + 285 pp.
pPublished by Hcfduamuyn Vealug, Berlin, 1985, vii

- -401-9
oM 88. 1SBN 3 8853? 4
!
[ .

. . me-
The mairy aim of the present book is to give a ga

two-person differential
not demanding fram the
nd not req-

theoretic introduction to zero-sum
It is elementary and concise,
iminary game-theoretic preparation a
the modern technical-

games.

reader any prel

uiring mathematical knowledge exceeding

college course of higher mathematics.

i h
To make it easier for the beginner to understand suc

atical subject as a differential game the mat-
a complex mathem >
d into two parallel streams:
d the elements of
In the subseq-

hannel: diff-

erial is initially divide
elements of the general theory of games an

the mathematical theory of optimal control.

uent treatment both streams merge into a single ¢

erential games.

“SECOND-ORDER SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS IN

THE PLANE"
By L.K. Hua, Y, Liw And C.-Q Wu _

itman Pullishing, London, 1985, 291 pp.
ISBN 0-273-08645-6

published by P
Stg £16.50.
This research note presents neu results in the thEOfy
f pairs of second-order partial differential equations 1n
o

PDEs
the plane, with applications. Second-order systems of

i ems
are reduced to their canonical form, from which the syst

n be easily classified as elliptic, hyperbolic, parabolic
ca
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i

Stg £30.

or composite. Boundary value problems,

lems and also the more complicated mixed
tigated.

initial value prob-

problems are inves-

Attention is paid both to bi-analytical function theory
gaverned by elliptic systems and to applications in elasticity.
The discrete phenomena of the uniqueness of the characteristic

problems for hyperbolic systems are discussed; also, the spline

finite strip methad and some numerical analyges for f

unctional
equations are provided.

Readership: Researchers and graduate students working in PDEs,

generalized hyperanalytic function theory and functi

onal equat-
ions,

Also engineers who use the method of PDEs to

solve
engineering problems, particularly in elasticity and electro-
statics.

"MULTIGRID METHODS FOR INTEGRAL AND DIFFERENTIAL EQUATIONS"

By d.J. Paddon and A, Holstein

Published by Clurcendon Press, Oxford, 1985, xii + 323 PP.

ISBN 0-19-853606-2

Many problems in numerical analysis are reducible to the
numerical solution of a system of algebraic equations, The
rob-
This
kshop

multigrid method is a promising neuw technique for such p
lems which has been developed since the late 1970s;
volume containg the proceedings of a Summer School/Wor

on Multigrid Methods held at the University of Bristol in Sept-

the
the

ember 1983 and attended by many leading researchers in

field (most of the Papers were revised later to include

authors' views and research up to July 1984),

EWS
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application for the professorship in Cork (see [1]). Smith
has done a very fine job in painstakingly deciphering the
handwriting of both Boole and De Morgan, a difficult job at
the best of times. He comments with great depth and percept-
ion on both the mathematical and personal content of each
letter and in particular he examines very closely the trains
of thought of both men in the crucial period 1847-1850 uwhile
symbolic logic was taking shape in their minds, albeit in diff-
erent forms. To my mind, Smith has done a fing job and his
book is indispensible to those interested in either Boole or
De Morgan or indeed the history of mathematics in general.
I can recommend the book very strongly and it should find a
place in every University Library so that students can see
the actual evolution of mathematical conceptsl

Much as I would like to give a book such as this unqual-
ified praise, I must draw attention to the number of misprints
and elementary errors it contains. These are all the more
surprising when one realises that the book has emanated from
Oxford University Press, but thankfully there is nothing that
a careful proof-reading of a second edition could not remedy.

The following is a list of potential corrections:
1. Page 2 Boole was married in 1855 not 1856.

2. Page 3 "obituary" is mispelled.

3. Page 33 Archbishop MacHale's first name was John not
William.

4, Page 38 "be" should be "by",

5. Page 40 The title of Boale's ma jor work was "An In-
vestigation of the Laws of Thought", not "An

Investigation into the Laws of Thought",
6. Page 142 "Edition" is mispelled.
7. Page 148 "Cambridge" is mispelled.

The bibliography of Boole's printed works contains over

twenty errors and slips, all of them minor, which I have att-
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empted to correct in [1].

The misprints and errors to which I have referred det-
ract only slightly from the book which I regard as a fine piece

of scholarship and welcome warmly. Rumour has it that the

author is at present working on a companion volume on the corr-
espondence of Boole a%d william Thomson, Lord Kelvin. I look

forward eagerly to itls publication.

/

!
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“THE ONE-DIMENSIONAL HEAT EQUATION"

(Encyclopaedia of Mathematics and its Applications - Vol. 23,

Section : Analysis)

By John Roziea Cannon

Published by Addison-Wesley Publishing Co., 1984, xxiii + 483
pp.s Stg £61.20. ISBN 0-201-13522-1

A few weeks ago, a colleague presented the following prob-

lem to a number of Applied Mathematicians, including myself:

du _ 3 u ; 0<x <1 t >0
Pt T ox +Fs ’
u(x,0) = 0, 0 <x <1
U(D't) = U(1lt) = 0’ t >0
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Are there any simple conditions on f that ensure the
existence of a solution for which u, 3du/dx, 3u/3t and

32u/3x? are continuous in [0,1) x [0,t]?

This is a question of regularity and such problems are usually
tricky. However, it relates to the one-dimensional heat equ-
ation and what could be simpler? Many helpful suggestions
were offered but nobody knew the answer. I set about my task
of reviewing Cannon's book with added interest.,, I was not
disappointed. The solution to the above and ﬁany more com-
plex problems may be found there. The main thrust of the
book is towards problems of existence, unigueness, stability
and other properties of solutions. It consists of a blend

of the research of Cannon and others with theiclassical mat-

erial and is written in the form of a monograbh.

An undergraduate background in real and complex analysis,
Lebesgue integration, fFourier series and transforms, familiar-
ity with the concept of a Banach space and an elementary course
in partial differential equations would be more than adequate
to enable a comfortable reading of the book. This is note-
worthy since most modern monographs which address the type
of material in Cannon's book require considerably more math-

ematical maturity on the part of the reader.

Cannon starts by collecting together a number of basic
inequalities and results from real and complex analysis and
Lebesgue integration for reference purposes in the preliminary
Chapter 0. He then develops in Chapter 1, the Weak Maximum,
Comparison and Uniqueness theorems (for solutions continuous
in the closure of the space-time domain in which the differ-
ential equation holds - the parabolic domain) and states with-
out proof the Extended Comparison and Uniqueness theorems for
solutions which admit a finite number of discontinuities on
the boundary of the parabolic domain (the parabolic boundary).
The latter theorems are fundamental to the development of the

subject matter (mainly for uniqueness proofs).
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The pure initial-value problem and initial-boundary value

problems are analyzed in Chapters 3 through 6. He starts
with the fundamental solution and develops boundary-integral
representations over the parabolic boundary of the solutions
which provide the basis for existence/uniqueness proofs for
quite general data. In Chapters 6 and 7 he reduces a wide
range of initial-bourddary value problems to the solution of
systems of boundary-fintegral equations and in Chapter B8 makes
use of this furmulafion to deduce existence/uniqueness, cont-
inuous dependence on the data and a priori bounds. Chapter
9 covers pufe boundary-value problems and periodic solutions.

These chapters provide an excellent introduction to the sub-

ject. The analysis is always very clear, rigorous and well-

organized.

The author takes the reader on a different route via
Chapter 2 and 10 through 12. The Cauchy problem, which is
ill-posed, is followed by analyticity properties of solutions
which are used to study continuous dependence on the data for
some ill-posed problems. Chapter 12 contains results of num-
erical experiments for some of the problems. These chapters

are novel. Discussion of such matters is usually brief.

Chapter 13 deals with the inverse problem of measuring
time-dependent diffusivity. The measurement problems are

formulated by over-specifying the data.

The reader is introduced to moving-boundary problems in
Chapters 14, 17 and 18. An elegant analysis of existence/
uniqueness and various properties of the free-boundary is

given for one-phase Stefan problems.

Finally, Cannon carries out an analysis of various init-
ial-boundary-value problems for the inhomogeneous equation
in Chapter 19 (wherein lay the solution of my colleague's
problem) using techniques of integral representation and ext-

ends it to some quasilinear equations jn Chapter 20.
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The list of references to the literature covering the

period 1800-1982 is truly encyclopaedic (taking up over 120

pages) and well-subclassified.

The author has cértainly made all the above topics acc-
essible to the first year graduate student. The mathematical
background needed does not extend far beyond the list of res-
ults in Chapter O. A few results on the convergence prop-
erties of Foruier series (assumed in Chapter 13) and in real
and complex analysis (assumed in Chapter 10) co&ld, profitably,
have been included in the list. However, his achievement
in leading the reader with such a modest background to such
impressive results is remarkable. Considerable care and
patience must have been exercised in the prepgration of the

book.

'

The book contains a wealth of problems. Some of them
are set at the end of a chapter but most appear as proofs left
to the reader. They vary in difficulty from straightforward
extensions of the text to the fairly challenging. I have
only one negative note to sound in this regard - one of the
most frequently utilized results in the book (the Extended
Comparison Theorem) was relegated to an exercise at the end
of Chapter 15. ‘Such an important result should have been
part of the text. The last monograph on this topic of which
I am aware is that of Widder in 1975 [7]. The scope of that
book was a good deal narrower than that of Cannon's and con-
tained no exercises. Cannon's problems provide a welcome

pedagogic addition to the literature.

The book is of interest for a variety of reasons. It
is classified under the section heading: Analysis. As a
textbook on applied analysis it is excellent. Standard the-
orems are really put to work. The Arzela-Ascoli Tehorem,
for example, was used several times in the establishment of
an existence proof. There is considerable interest at the
present time in the development and application of Boundary-
Integral Equation (B.I.E.) methods to dynamic problems in Heat
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Transfer [3,4] and related problems. The abstract method
which has been analysed in Cannon's book is known in the B.I.E.
community as the 'indirect B.I.E. method' and is less popular
than the so-called ‘'direct method' {2]. The material in the
book could provide a basis for the numerical analysis of ind-
irect methods and coqld possibly be extended to cover direct
methods also. I am/unaware of any work along these lines.

/

The approach téd parabolic equations which has been demon-
strated by the author is not, of course, the only one. A
different domain of ideas (which, for example, finds applic-
ation in the Finite Element solution of parabolic equations)
is based on a distributional approach (involving concepts of
Sobolev spaces and Semigroups). The mathematical apparatus
needed to deal with such ideas is a good deal deeper than that
required by Cannon [1,5,6]. The quality of production (lay-
out, print, diagrams) is excellent. I counted about thirty
errors of various kinds (trivial misprints, references to in-
correct or non-existent equatians/theorems, a few incorrect

statements of a minor nature).

In summary, I would consider this to be among the best
books I have read on partial differential equations. Every

university library should have a copy.
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"ADVANCED ENGINEERING MATHEMAT ICS"
By Ladis D. Kovach

Published by Addison-lesley Pullishing Co., Inc., 1982, xi +
706 pp. Stg £14.50. ISBN 0-906783-05-4

What is the engineer's role in society?
What mathematical skills does

How does matb-
ematics assist the engineer?
an engineer need? Who is best equipped to teach him these
skills? Should he receive a shallow treatment of a great
variety of different mathematical topics or a thorough treat-

ment of a few?

These are but a few of the many questions that must con-
stantly occupy the minds of faculty members in any institutions

that train future engineers; and anybody intending to write a

mathematics textbook for students of modern engineering science

must address himself to them.
itably,

The resulting book will, inev-

reflect the author's perceptions of what constitutes

a suitable mathematical training for the engineer who will

tackle tomorrow's problems.

In the preface of the book under review, the author dec-

lares "that design i? the primary function of an engineer";

and that

"a prerequisite for design is analysis". He goes

on to announgé his purpose in writing the book: "our object-

ive is to demonstrate in a number of ways how an engineer might

strip a problem of worldly features that are unimportant com-

plexities, approximate the problem by means of a mathematical

representation, and analyze this."

In this respect, the

author's intentions are no different to those of writers of

similar books in which mathematical modelling is used to come

to grips with physical problems.

A number of mathematical techniques that are used in

engineering analysis are discussed in the text.

The chapter

headings may convey some idea of the material covered in the

book:

9.

10.

First-Order Ordinary Differential Equations;
Higher-Order Differential Equations;

The Laplace Transformation;

Linear Algebra;

Vector Calculus;

pPartial Differential Equations;

Fourier Series and Fourier Integrals;

Boundary-Value Problems in Rectangular Coordinates;
Boundary-Value Problems in Other Coordinate Systems;

Complex Variables.




The material is arranged so that a topic is not intro-

duced until it is needed. Thus, applications of the lLaplace
transformation to the solution of linear systems of different-
jal equations motivate an examination of systems of algebraic
equations; hence the reason why Chapter 4 follous from Chap-
ter 3. Again, conformal mapping is treated in the last chap-
ter because a need for it was anticipated in the earlier chap-
ters. In this way, the author carries out his plan to write
the text so that the topics flow from one to the next.

2
i

Over 2000 exercises are given. Some of these are meant
to elucidate points in the text, others are designed to pro-
vide drill for the student, while a third group is meant to
challenge the student's understanding of the techniques used.
Answers and hints to selected exercises are presented. Sev-

eral of the exercises are incorrectly stated.

The book is well-written, very readable and has been very
carefully proofread. 1 detected only five typographical
errars - on p. 443, 2.11; p. 597, 2.13; p. 621, 2.17; p. 622,
2.1 and p. 635, 2.1 - and these are obvious and not likely
to trouble the reader.

A feature of the book is the number of very brief bio-
graphical sketches that the author gives, either in the body
of the text or in footnotes. Indeed, I know of very few books
where one is likely to learn the names and origins of so many
mathematicians whose work has made an impact in engineering.
However, I could not help noticing that the author could not
decide on Sir William Rowan Hamilton's nationality: he is
referred to as an English mathematician on p. 227 and as an
Irish mathematician on p. 275. On the other hand, George G.
Stokes is referred to as an Anglo-Irish mathematical physicist.

still, it is nice to see homage paid to our predecessors'.

A fgw "howlers" have crept into the book. For instance,
it is mentiocned on p. 597 that " ... some sets cannot be class-

ified as open or closed. The set (of complex numbers z satis-
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fying) 1 s Rez 5 2 is such a set (Exercise 1)." The answer
to Exercise 1 reveals why: "The set is not closed since it

has no boundary in the y-direction"! Again, on p. 621 it

is asserted that Cauchy's integral formula (giving the value
of an analytic function at a point interior to a simple closed
curve in terms of its values on the curve) " ... is called a
formula because it shﬁms that the value of an analytic function

at an isolated singu)arity can be calculated by means of a
contour integral! !

/l

Considering the importance of Fourier analysis in applic-
ations, it is a little surprising to find on p. 422 the state-
ment "that the convergence problem for a Fourier series is
still unsolved." One would have thought that, by nouw, Leﬁnart
Carleson's 1967 result about the almost everywhere convergence
of the Fourier series of a square-integrable function would

have filtered through to most mathematicians who teach engin-
eering students.

How does the book compare with others on the market?
I tested it against two books with exactly the same title,
one by Erwin Kreyszig, published by John Wiley & Sons Inc.,
1979, 4th ed., and the other by C. Ray Wylie and Louis C.
Barrett, published by McGraw-Hill International Book Company,
1982, S5th ed. The first editions of both of these appeared
in 1962, and are very highly regarded. In my opinion, the

book under review is unlikely to challenge either of them in
the market place.

Finbann Holland,
Mathematics Depantment,
Univernsity College,
Conk




PROBLEM PAGE
First of all, here's a simple arithmetical problem.

1. The recurring decimal 0.001 represents a rational number.
How long is the recurring block of digits in the square of this

number?

Next, a praoblem sent in by Des MacHale.

§

2. Prove that at least one of the numbers 7w +e, me, is

transcendental,

Finmally, a quickie on infinite series. ‘

3. Suppose that a2 0, for n = 1,2, ... . How large can

an
a,t+a+ ... +an

Il 18

1 e

be?

Now here are the solutions to some earlier problems.

1. If 1 <ps2anda = g% show that

cos @
(EEEE)D 2 1 + tanacos pé, 0s0 s a.

Since there is equality when @=q, it is enough to prove
that

-sinﬁ(l:ose)p'1 s -sina(cosa)p_1sinp9. 0s0 s a
which follows immediately if the function

sin 6(\:056)‘3-1
sinp6

is decreasing for 0 < 6 s a. On differentiation this reduces

- 86 -

to proving that, for 0 < 8 = a,

2 tanf
1 s (p-1)tan?6 +p Tanpb
2 2 tanb
<> sec?6 s pltan?® +‘T§Bpe]

<> sinpd = %[(1 - c0s20)sinpd + sin208cospl ]

f
c-:/(z-p)sinpe s p sin(2-p)o.

/

Since 0 s 2-p < p and pB = n/2, this fimal inequality holds
because sint/t is decreasing for D < t = /2. The proof is

complete.

Remarks
1. The special case 6 = 0 can be written as:

1 2z (cosa)?P + (cosn)p'1sina, 1 <p s 2,
where a = w/2p. Is there a simpler proof of this?

2. The inequality appears in a paper by Matts Essen ("A Super-
harmonic Proof of the M. Riesz Conjugate Function Theorem, Ark.
for Mat., 22 (1984) 241-249). It is needed to show that a
certain function is superharmonic and thus to prove the M.

Riesz theorem (with the best possible constant). The 'elem-

entary' proof of the inequality, given above, was first found

by Wolfgang Fuchs.

2. Suppose that 0 = ¢, s ... s ¢ s m, that A = [sin(|¢i-¢jn]
and that ||A]| = max{]|Ax|| ¢ [|x}].= 1}. Show that

[1al] s cot(zx)

and characterize the case of equality.




This problem was kindly sent in by Bob Grone of Auburn
University. He also supplied the following solution, which

depends on two results which are not particularly well known.
1'11 state these results first and discuss them in more detail

after showing how they solve the problem.

Result 1 An nxn matrix A with non-negative entries has an

eigenvalue A with the following properties:
b

Al
(i) Az Jul, for all eigenvalues u of A, and

T
(ii) A has an associated eigenvector x = [x3s ov- xn]

of unit norm for which

i=1,

Result 2 If a,, ..., &  are the lengths of the sides of a .
plane closed polygon and eij is the angle between the positive

directions of the sides a; and ajs then the area of the poly-

gon is

i_z_aia.sine

i=j 1]

To solve the problem, note that A = [sin|¢i - ¢j|] is

. n
symmetric and so one can form an orthogonal basis for IR of

eigenvectors of A. Using @his one easily sees that
T .
[al]l = 2 = x'Ax = Ziijixj51n(¢i - ¢j),

where A is the eigenvalue and x the eigenvector described in

Result 1.

according to Result 2, the sum on the right is exactly
twice the- area of the centro-symmetric 2n-gon whose first n
consecutive edges have lengths X3, ...y X and are inclined
at angles ¢1s +ce ¢n to the x-axis. By the isoperimetric
inequality, this is at most twice the area of the regular 2n-
gon with perimeter 2(xy + oos + xn). Hence

2
[1all s (X1 + voe + Xn)

W
= cot(zﬁJ.
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Among all positive unit vecters x, the maximum value of

(X, + oo + xn)2 equals n, and this is obtained uniquely at

(1/V/ns <oy 1/V/nN). Thus

w .
Al 5 cot(Z),

with equality if and ?nly if 0y, = i%. 1= 1, eeey N
/.

)
Result 1 belongé to the Perron-Frobenius theory of non-
f
negative matgﬁces (see, for example, E. Seneta, "Non-Negative

Matrices and Markov Chains, Springer). To prove it one puts

K=1(xe R” : |Ix|| =1, x;, 20, i =1, «cc, n}

r(x) i - Lo X K.

One then shows that r is bounded above on K and that
A = sup{r(x) : x € K]}

is attained at an eigenvector x with associated eigenvalue A.

To complete the proof note if y = [y1s «eus yn]T is any
eigenvector of unit norm with associated eigenvalue u then
luyi| s Zaij'yj" i=1, «oey n.
3
and so

Jlul s min Zaijlyjl s A

Yilj
Result 2 is easily proved by induction using the following

fact about areas:




Ur
d

R

Area AABC = Area ABCD + Area AAED.

Jim Clunie points out that Result 2 appebrs in Hobson's

1 -
'Plane Trigonometry' and also remarks th?t 'They don't write
books like that anymore!" '

Phil Rippon,

Open Univensity,

MNilton Keynes.
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