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On an inverse tangent problem

FINBARR HOLLAND AND ROGER SMYTH

Abstract. Even before the beginnings of Calculus a variety of methods for construct-

ing tangents to plane curves were known. But what about the converse problem—

raised by Debaune in the seventeenth century: under what conditions will a given

collection of straight lines be tangents to the same curve? Utilizing Hermite’s inter-

polation theorem, we show in Section 2 that the members of any finite collection of

lines are tangents to infinitely many differentiable plane curves. After first developing

a prescient observation of Descartes in Section 3, we state and prove our main theo-

rem in Section 4,. This describes sufficient conditions for a one-parameter collection

of lines in complex form to be the family of tangents of a differentiable curve in the

complex plane. As an application, we derive Jakob Steiner’s nineteenth century result

that, all save three members of the collection of Wallace-Simson lines of a triangle,

are tangents to a deltoid whose incircle is the nine-point circle of the triangle.

1. Introduction

Since the time of Descartes (1596–1650) and Fermat (1601–1665)—and indeed long
before [1]—a variety of methods have been developed for constructing tangents to plane
curves whose equations were known in different coordinate systems, explicitly or im-
plicitly. But what about the inverse problem? Knowing the tangents to a curve, is
it possible to determine its equation? This problem appears to have been first raised
by Florimond Debaune (1601–1652) ([2], p. 351), but mathematicians of the day were
unable to solve it. While Descartes made a pertinent observation about the problem,
which we develop in Section 3, it was left to Leibniz (1646–1716) to provide a satisfac-
tory answer several decades later ([2], p. 426), one that ultimately led to the study of
differential equations.

It is Debaune’s inverse tangent problem that motivates the topic discussed here,
but we treat a slightly different question. Precisely, we ask: under what conditions
are members of a collection of straight lines in the complex plane C tangents to a
differentiable curve? We begin by showing that a finite number of lines in C are tangents
to infinitely many polynomials, and, guided by an observation made by Descartes in
response to Debuane’s question, proceed to present sufficient conditions under which
members of a one-parameter collection of lines in C are tangents to a differentiable
curve. We illustrate our methods by showing that all (save three) members of the
collection of Wallace-Simson lines of a triangle are tangents to the deltoid that encloses
the nine-point circle of the triangle, a result due to Jakob Steiner [8].

2. A finite number of lines

To keep the algebra to a minimum, we’ll work throughout with the complex form of
the equation of a straight line, rather than with its cartesian form. If L is a straight
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line in the complex plane, its characteristic feature is that the unimodular expression

t =
a− b

ā− b̄

is the same for every pair of distinct points a, b belonging to L. This invariant is called
the clinant1 of L—a useful term coined in 1890 by F. Franklin [3] and often cited in the
work of Frank Morley ([5],[6]). Hence, if z and a belong to L, and are distinct, then
z − tz̄ = a − tā. Accordingly, the equation of a straight line in C can be described as
the set of complex numbers z that satisfy an equation of the form z + τ z̄ = c, where
τ and c are constants, τ is a turn, i.e., a member of the unit circle T , and τ c̄ = c; in
which case −τ is the clinant of the line.

Given n such lines in C with equations z + τiz̄ = ci, i = 1, 2, . . . , n, where, for each
subscript i, |τi| = 1, and τic̄i = ci, we’ll proceed to show that they are tangents to
an analytic polynomial of degree 2n − 1. Before doing so, however, it’s convenient to
recall Hermite’s interpolation problem, which calls for a polynomial to have preassigned
values and derivatives at specified places. To set the scene, select n distinct (real or
complex) numbers x1, x2, . . . , xn, and consider the problem of finding a polynomial
p such that p(xi) = ai, p

′(xi) = bi, i = 1, 2, . . . , n, for preassigned real or complex
numbers ai, bi, i = 1, 2, . . . , n. Viewing this as a system of linear equations in the
coefficients of p, and examining the matrixM of coefficients, which is of Vandermonde’s
type, it’s not too difficult to show that | detM | =

∏

1≤i<j≤n |xi−xj |4 > 0. Hence, there
is a unique polynomial p of degree 2n−1 that interpolates the data. While this existence
argument is sufficient for our purposes, it is useful to know Hermite’s explicit formula
for p. According to this, as can be readily verified,

p(x) =
n
∑

i=1

(

ai
(

(1− 2π′i(xi)(x− xi)
)

+ bi(x− xi)
)

πi(x)
2,

where π(x) =
∏n

i=1(x− xi), and

πi(x) =

∏

j 6=i(x− xj)

π′(xi)
, i = 1, 2, . . . , n.

In fact, this is a special case of a more general interpolation formula due to Spitzbart[7].
Returning to our tangent problem: for i = 1, 2, . . . , n, denote by ui a square root of

−τi, take ai = ci/2, bi = ui, and apply Hermite’s result to obtain an analytic polynomial
p of degree 2n− 1 such that

p(xi) =
ci
2
, p′(xi) = ui, i = 1, 2, . . . , n

Consider now the tangent to p at the point p(xi); since p′(xi) 6= 0 it has equation

0 = ℑ{(z − p(xi))p′(xi)}. Inserting the values of p and p′ at xi, this equation reduces
to

0 = z − ci
2
−
(

z̄ − c̄i
2

)ui
ūi
.

But, by hypothesis, |τi| = 1, τic̄i = ci, and u
2
i = −τi, by choice. Hence, the latter form

of the equation of the tangent becomes z + τiz̄ = ci, as required.
By way of illustration, we’ll apply Hermite’s formula to derive the equation of a

quintic polynomial p : R → C that touches the three lines

L1 : z + z̄ = −2; L2 : z + z̄ = 0; L3 : z + z̄ = 2;

1Two lines are parallel iff they have the same clinant, and perpendicular, iff the sum of their clinants

is zero,
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at the points p(−1), p(0), and p(1), respectively. These lines are parallel to the imagi-
nary axis having the same clinant, viz., −1, the square of i. Also, c1 = −2, c2 = 0, and
c3 = 2. In addition, x1 = −1, x2 = 0, and x3 = 1, whence π(x) = x(x2 − 1) and

π1(x) =
1

2
x(x− 1), π2(x) = 1− x2, π3(x) =

1

2
x(x+ 1).

Applying the formula, with a1 = c1/2 = −1, a2 = c2/2 = 0, a3 = c3/3 = 1, and
b1 = b2 = b3 = i, after some tedious calculation we get

p(z) =
1

2
(3(i− 1)z5 − 5(i− 1)z3 + 2iz), z ∈ R,

as the desired polynomial, which can, of course, be verified directly.

Figure 1. Quintic polynomial touching 3 parallel lines; x = 0, x = ±1

It can also be easily verified that the concurrent lines

M1 : z − iz̄ = 0;M2 : z + z̄ = 0;M3 : z + iz̄ = 0;

are tangents to the quintic

1

4
z(z2 − 1)

(

uz(z − 1)− 4i(1− z2) + ūz(z + 1)
)

, z ∈ R,

where u := (1 + i)/
√
2 is a square root of i, the clinant of M1.

Figure 2. Quintic polynomial touching 3 concurrent lines; x = 0, y = ±x
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A slight modification of the argument preceding these illustrative examples shows
that the given lines z + τiz̄ = ci, i = 1, 2, . . . , n, are also tangent to a trigonometric
polynomial. To see this, select n real numbers θ1, θ2, . . . , θn, so that the turns xk =
eiθk , k = 1, 2, . . . , n, are distinct. Keeping the same notation as before, determine the
analytic polynomial p of degree 2n− 1 that satisfies the conditions

p(xk) =
ck
2
, p′(xk) = ix̄kuk, k = 1, 2, . . . , n.

Define the trigonometric polynomial f on (−∞,∞) by f(x) = p(eix). If f ′(x) 6= 0, the
equation of the tangent at f(x) is given by

z − f ′(x)

f ′(x)
z̄ = f(x)− f ′(x)

f ′(x)
f(x).

In particular, since f(θk) = p(xk) =
ck
2 , and f

′(θk) = ixkp
′(xk) = −uk 6= 0, the equation

of the tangent at f(θk) is the set of z such that

0 = z − uk
ūk
z̄ − ck

2
+
uk
ūk

c̄k
2

= z − u2kz̄ −
ck
2

+ u2k
c̄k
2

= z + τkz̄ −
ck + τk c̄k

2
= z + τkz̄ − ck,

since τk c̄k = ck, by hypothesis. Thus the family of lines z+ τiz̄ = ci, i = 1, 2, . . . , n, are
tangents to f , a 2π-periodic function.

It follows from this that any n straight lines are tangents to infinitely many analytic
polynomials of degree 2n− 1, and also to infinitely many trigonometric polynomials of
degree 2n − 1. The latter means, in particular, that the lines are tangents to many
closed curves in C.

Contrast this statement with the fact that three non-concurrent lines, no two of
which are parallel, are tangents to precisely four circles, namely, the incircle and the
three excircles of the triangle determined by the lines, something we learn in secondary
school. For instance, the lines

z − z̄ = 0; z + iz̄ = 1 + i; z − iz̄ = −1 + i;

are tangents to the four circles

C1 : |z − (
√
2− 1)i| =

√
2− 1;C2 : |z −

√
2− i)| = 1;C3 : |z +

√
2− i| = 1;

and C4 : |z + (
√
2 + 1)i| =

√
2 + 1. Of these, C1 is the incircle of the triangle with

vertices −1, 1, and i, and C2, C3 and C4 are its excircles.
This raises the possibility, that, by imposing suitable incidence relations on a set of

n lines, it may be possible to produce a finite number of closed curves to which some
or all of the lines are tangents. Our intention is to explore this possibility in a future
publication, whose purpose is to complement the approach taken in [5], where it is
shown that finitely many curves of a certain kind touch n lines.

3. Descartes’ insight

We learn from ([2], p. 426), that Descartes gave the following response to Debeaune
about the latter’s inverse tangent problem mentioned in Section 1: “I do not believe
that it is in general possible to find the converse to my rule of tangents, nor of that
which M. Fermat uses, . . . ”. But, on the same page, he leaves the following insightful
remark to posterity: “There is indeed another method that is more general and a priori,
namely, by the intersection of two tangents, which should always intersect between the
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points at which they touch the curve, as near one another as you can imagine; for
in considering what the curve ought to be, in order that this intersection may occur
between the two points, and not on that side or the other, the construction for it may
be found.”

This statement appears to apply in particular to the graphs of real convex (or con-
cave) functions defined on subintervals of the real axis, and one can present sufficient
conditions for it to hold for parametrically defined functions. What follows is our in-
terpretation of what we believe Descartes may have had in mind.

Theorem 3.1. Suppose I is a subinterval of (−∞,∞) and γ : I → C is twice con-

tinuously differentiable on I, and determines a curve Γ with non-zero curvature at a

point u ∈ I. Then there exists a neighbourhood N of u such that if s, t ∈ N and s 6= t,
the tangents Lt and Ls to Γ at γ(t) and γ(s), respectively, intersect at a unique point

z(t, s), say, and

lim
t→u

z(t, u) = γ(u).

Proof. By hypothesis, γ is differentiable on I and its derivative doesn’t vanish there.
Therefore the equation of the tangent to Γ at any point γ(t) is given by the set of z

such that ℑ{(z − γ(t))γ′(t)} = 0, equivalently, z + τ(t)z̄ = c(t), where

τ(t) = −γ
′(t)

γ′(t)
, and c(t) = γ(t) + τ(t)γ̄(t).

Hence

−τ ′(t) = γ′′(t)γ′(t)− γ′(t)γ′′(t)

γ′(t)2
=

2iℑ
(

γ′′(t)γ′(t)
)

γ′(t)2
.

This expression is continuous and non-zero at u, by assumption. Hence, by continuity,
at least one of ℜτ ′,ℑτ ′ is non-zero on some neighbourhood N of u. Hence, by the Mean
Value Theorem, at least one of ℜτ,ℑτ is one-one on N , whence τ is one-one on N .
Consequently, if t, s ∈ N , and t 6= s, the corresponding tangents Lt, Ls intersect and
their point of intersection z(t, s) is given by

z̄(t, s) =
c(t)− c(s)

τ(t)− τ(s)
.

Clearly,

lim
t→u

z̄(t, u) =
c′(u)

τ ′(u)

=
γ′(u) + τ(u)γ′(u) + τ ′(u)γ̄(u)

τ ′(u)

=
τ ′(u)γ̄(u)

τ ′(u)

= γ̄(u).

In other words, the claim is true. �

This result seems to be the basis for the recipe utilized by various authors who seek
to determine the equation of a curve from a one-parameter set of lines they assume are
its tangents.
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4. One-parameter families of lines

As we’ve seen, the members of any finite collection of straight lines are tangents to
infinitely many curves. However, this no longer holds if the collection is infinite. For
instance, it’s easy to see that the members of the one-parameter family of lines indexed
by t on [0,∞), with cartesian equations y + tx = 1, are not all tangents to the same
planar curve defined on [0,∞). In this section, we prescribe sufficient conditions for all
or some members of a one-parameter family of lines in C to be tangents to the same
curve.

Definition 4.1. We call a pair of functions φ, ψ defined on an interval I of the real line
compatible on I, if, for all t ∈ I, |φ(t)| = 1 and φ(t)ψ(t) = ψ(t).

For instance, the members of each of the ordered pairs (1, cosx), ((ix − 1)/(ix +
1), i/(ix + 1)), and (einx, (1 + eix)n), where n is a nonnegative integer, are compatible
on any subinterval of (−∞,∞).

Such a pair of compatible functions defines a one-parameter family of lines indexed
on I, with equations z+φ(t)z̄ = ψ(t), t ∈ I. Under what circumstances will such a pair
generate lines some or all of which are tangents to a differentiable curve parameterised
on I?

To get a handle on this problem, notice as before that if f : I → C is differentiable
and t ∈ I, then the curve Γf = f(I), has a tangent Tt at f(t) as long as f ′(t) 6= 0, in

which case its equation is the set of z such that ℑ{(z − f(t))f ′(t)} = 0, equivalently,
z + τf (t)z̄ = cf (t), where

τf (t) = −f
′(t)

f ′(t)
and cf (t) = f(t) + τf (t)f(t).

Clearly, τf and cf are compatible on I. Consequently, if, for some compatible pair φ, ψ
on I, and some t ∈ I, the equation z + φ(t)z̄ = ψ(t) coincides with that for Tt, then
φ(t) = τf (t) and ψ(t) = cf (t), so that

f ′(t)φ(t) + f ′(t) = 0, and f(t) + f(t)φ(t) = ψ(t).

Conversely, if for a given pair of compatible functions these functional equations are
satisfied by an appropriate function f at some point t ∈ I, the set of z such that
z + φ(t)z̄ = ψ(t) is the tangent to Γf at f(t).

To consider further the solution f of these last displayed equations, assume φ, ψ are
differentiable on I. Then, by differentiation of the second equation, and using the first,
we see that

ψ′(t) =
d

dt

(

f(t) + f(t)φ(t)
)

= f ′(t) + f ′(t)φ(t) + f(t)φ′(t)

= f(t)φ′(t).

In other words, at least formally,

f(t) =
ψ′(t)

φ′(t)
.

This formula, backed up by Theorem 3.1, suggests a means of recovering the equation
of a curve some or all of whose tangents are assumed to be of the form z+ z̄φ(t) = ψ(t),
for some t ∈ I, where φ, ψ are at least compatible and possess certain differentiability
properties, as yet unstated. The next theorem supports this statement.
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Theorem 4.2. Suppose φ, ψ are compatible on I, twice differentiable there and such

that φ′ and ψ′′φ′ − ψ′φ′′ are both non-zero on I. Then the collection of lines Lt :
z + φ(t)z̄ = ψ(t), t ∈ I, coincides with the family of tangents to a differentiable curve

C parameterised on I by the complex conjugate of ψ′/φ′.

Proof. Define f to be the complex conjugate of ψ′/φ′. Let C = f(I). Since by hy-
pothesis, φ′ 6= 0, f is well-defined on I and differentiable there with derivative given
by

f̄ ′ =
ψ′′φ′ − ψ′φ′′

(φ′)2
, (1)

which is non-zero on I by assumption. Hence, the tangent T to C at f(t) has equation

z + τ(t)z̄ = c(t), where τ(t) = −f ′(t)

f ′(t)
and c(t) = f(t) + τ(t)f(t).

We claim that T coincides with Lt. Since φψ̄ = ψ, and d
dx
ḡ = g′ for any differentiable

function g on (−∞,∞), we have that φ′ψ̄ + φψ̄′ = ψ′, whence

ψ̄ +
φψ̄′

φ′
= f̄ , and so φf̄ = φψ̄ +

φ2ψ̄′

φ′
= ψ +

φ2φ̄′f

φ′
.

Hence

f + φf̄ = ψ + (1 +
φ2φ̄′

φ′
)f = ψ,

because 1 = φφ̄ and so 0 = φ′φ̄ + φφ′. Hence, in particular, f(t) + φ(t)f(t) = ψ(t),
which means that f(t) ∈ Lt. Next, we prove that T and Lt have the same clinants.

The claim is that f ′(t) + φ(t)f ′(t) = 0. But, as we’ve just seen, f + φf̄ = ψ, hence
f ′ + φf ′ + φ′f̄ = ψ′ = φ′f̄ , which means that f ′ + φf ′ = 0, and so, in particular, the
claim is true. Thus, Lt and T are parallel, and so coincident, since they share the point
f(t).

�

Example 4.3. All but one of the lines

z + e3ixz̄ = (1 + eix)3,

parameterised on [0, 2π], is a tangent to the cardioid curve z(x) = (1 + eix)2.

Proof. The family of given lines is generated by the compatible functions φ(x) = e3ix,
and ψ(x) = (1 + eix)3. Also, φ′ 6= 0 and

ψ′(x)

φ′(x)
=

3ieix(1 + eix)2

3ie3ix
= (1 + e−ix)2,

so that

ψ′′(x)φ′(x)− ψ′(x)φ′′(x) = φ′(x)2
(ψ′(x)

φ′(x)

)′

= −2iφ′(x)2e−ix(1 + e−ix).

Hence ψ′′(x)φ′(x) − ψ′(x)φ′′(x) is non-zero save at x = π. Hence Theorem 4.2 applies
on each of the intervals [0, π), (π, 2π], and the stated result follows. �

Example 4.4. Suppose |α| 6= 1. All the lines

z +
e2ix − α

1− ᾱe2ix
z̄ =

eix

1− ᾱe2ix
,

parameterised on [0, 2π], are tangents to an ellipse.
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Proof. To begin with, it’s not too difficult to see that the differentiable functions φ, ψ
defined on [0, 2π] by

φ(x) =
e2ix − α

1− ᾱe2ix
, ψ(x) =

eix

1− ᾱe2ix
,

are compatible, satisfy the conditions of Theorem 4.2, and that

φ′(x) =
2eix(1− |α|2)
(1− ᾱe2ix)2

, ψ′(x) =
1 + ᾱe2ix

(1− ᾱe2ix)2
,

Hence the given lines are tangents to the curve defined by

f(x) =
eix + αe−ix

2(1− |α|2) .

which describes an ellipse. �

Figure 3. A family of lines that touch an ellipse

5. Wallace-Simson lines of a triangle

Suppose the numbers t1, t2, and t3 are distinct turns. Consider them to be the
vertices of a triangle ABC inscribed in the unit circle T , and denote by s1, s2, and s3
their corresponding symmetric polynomials. The three equations

z + t1t2z̄ = t1 + t2, z + t2t3z̄ = t2 + t3, z + t3t1z̄ = t3 + t1

are those of the sides of ABC. If |t| = 1, it’s easy to verify that the numbers p, q, r,
defined by

2pt = t2 + (t1 + t2)t− t1t2, 2qt = t2 + (t2 + t3)t− t2t3, 2rt = t2 + (t3 + t1)t− t3t1,

are the projections from t onto these lines. (For instance, p is on the line z + t1t2z̄ =
t1 + t2, and t1t2 is the clinant of the line joining t and p.) Also,

2t(p− q) = (t1 − t3)t− t1t2 + t2t3 = (t1 − t3)(t− t2),

so that
p− q

p̄− q̄
= t̄t1t2t3 = t̄s3.
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Hence, t̄s3 is the clinant of the line through p and q. By symmetry, this is also the
clinant of the line through q and r. Hence, the points p, q, and r are collinear, and lie
on the line WS(t), one form of whose equation is

z − t̄s3z̄ = p− t̄s3p̄.

This line is called the Wallace-Simson line of ABC associated with t.

5.1. The Steiner deltoid of ABC. Inserting the value of p given above, an alternative
form of the equation for WS(t) follows, namely,

z − t̄s3z̄ =
1

2
(t+ s1 − s2t̄− s3t̄

2).

Writing φ(t) = −t̄s3 and ψ(t) = p− t̄s3p̄ = p+ φ(t)p̄, observe that |φ(t)| = 1, and so

φ(t)ψ(t) = φ(t)p̄+ φ(t)φ(t)p = |φ(t)|2p+ φ(t)p̄ = p+ φ(t)p̄ = ψ(t).

Hence, the infinitely differentiable functions φ(eix), ψ(eix) are compatible on (−∞,∞).
The equations

z + φ(x)z̄ = ψ(x), 0 ≤ x ≤ 2π,

therefore determine the one-parameter family of Wallace-Simson lines of ABC. Utilizing
Theorem 4.2 we’ll show that all but three members of this family are tangents to a
three-cusped hypocycloid. To this end, note that

φ(x) = −e−ixs3, ψ(x) =
1

2
(eix + s1 − s2e

−ix − s3e
−2ix),

and so

φ′(x) = ie−ixs3, ψ
′(x) =

1

2
(ieix + is2e

−ix + 2s3ie
−2ix).

Hence
ψ′(x)

φ′(x)
=
e2ix + s2 + 2s3e

−ix

2s3
=

1

2
(s̄3e

2ix + s̄1 + 2e−ix),

since s2 = s̄1s3. According to Theorem 4.2, the function f whose tangents are among
those of the given family of Wallace-Simson lines is given by

f(x) =
1

2
(s3e

−2ix + s1 + 2eix), 0 ≤ x ≤ 2π,

which is the equation of a deltoid, a closed curve with three cusps, resembling a curvi-
linear equilateral triangle. Alternatively, it can be viewed as the image of the unit circle
under the map

zS(t) =
1

2
(s1 + 2t+ s3t̄

2) =
t1 + t2 + t3

2
+ t+

t1t2t3
2

t̄2, |t| = 1.

Since
f ′(x) = −ie−2ix(e3ix − s3) = −ie−2ix(e3ix − t1t2t3),

f fails to have tangents at only its three cusp points, namely the points zS(α), zS(β), zS(γ),
where the turns α, β, γ are the distinct cube roots of t3 − s3.

Notice that the constant term 1
2s1 =

1
2(t1 + t2 + t3) in the equation of f is the centre

of the nine-point circle associated with ABC, whose equation is |z − s1
2 | = 1

2 . Hence, if

|t| = 1, the point (s1 + 2t+ s3t̄
2)/2 on the deltoid lies on the nine-point circle iff

|2t+ s3t̄
2| = 1, i.e., |2t3 + s3| = 1,

the solutions of which satisfy t3 = −s3. This is so because if |u| = 1, then |2u+ 1| = 1
iff u = −1. Thus, the nine-point circle of ABC touches the deltoid at three points.
Moreover, for all t ∈ T ,

|zS(t)−
s1
2
| = 1

2
|2t+ s3t̄

2| ≥ 1

2
|2|t| − |s3t̄2|| =

1

2
.






