
Irish Math. Soc. Bulletin
Number 71, Summer 2013, 59–66
ISSN 0791-5578

TO WHAT DOES THE HARMONIC SERIES
CONVERGE?

DAVID MALONE

Abstract. We consider what value the harmonic series will con-
verge to if evaluated in the obvious way using some standard com-
putational arithmetic types.

1. Introduction

In Niall Madden’s article about John Todd [5], he mentions a topic
we might bring up in an introductory course on analysis: the ques-
tion of convergence of the harmonic series and what would happen
if it was näıvely evaluated on a computer using finite precision. In
particular, the obvious way to evaluate

sN =
N∑
n=1

1

n

is to use an algorithm similar to Algorithm 1. If we run this al-
gorithm using integer arithmetic where division commonly rounds
down, then the sum converges to 1, as after the first term the recip-
rocal becomes zero. If we use a different rounding, where 1/2 rounds
to 1, then the sum will converge to 2.

Algorithm 1 Simple algorithm for calculating the harmonic series.

s← 0, N← 1
for ever do
s← s + 1

N
, N← N + 1

end for

2010 Mathematics Subject Classification. 65G50.
Key words and phrases. roundoff error, series.
Received on 3-5-2013.

c©2013 Irish Mathematical Society

59

60 D. MALONE

2. Floating Point

Of course, no one is (deliberately) likely to try and evaluate this
sum using integer arithmetic. However, using floating point arith-
metic seems more promising. Students, when learning numerical
programming, sometimes assume that the answer given by the com-
puter is exact, and the harmonic series can be a good example to
help them understand what can go wrong.

We usually ask them to reason as follows. We know that if s and N

were double precision floating point numbers, the sum will gradually
grow while what we add gradually decreases. Also, because the sum
and most reciprocals cannot be represented exactly as floating point
numbers, the reciprocal and the sum will be rounded. Thus, if we
round to the nearest representable number, we see that the sum
must eventually become constant. We reach a similar conclusion if
we round toward zero or toward −∞.

This is an existence proof for the limit, but it might be of interest
to know what value the sum converges to, or at what term the
sequence becomes constant. Floating point behaviour is well defined
[2, 3], so can we use this to make an estimate?

Let’s consider the commonly encountered format of binary64 dou-
ble precision floating point numbers. In this format, one bit is used
to store the sign of the number, 11 bits are used to store a binary
exponent and the remaining 52 bits are used to store bits of the
binary expansion of the number. The value of a particular pattern
of bits is, usually, interpreted as:

(−1)S

(
1 +

52∑
i=1

Bi

2i

)
2E−1023,

where S is the sign bit, B1, . . . B52 are the bits of the binary expan-
sion of the number and E is the value of the exponent bits inter-
preted as positive binary integer. Note, the leading bit is not stored,
because if the number is non-zero then it must always be one. Some
numbers, including zero, are stored as special cases, which are in-
dicated by making all the exponent bits zero or one. Other special
types of number stored in this way include plus/minus infinity, NaN
values (to indicate results of invalid operations) and special small
denormalised numbers.

For floating point numbers of the format described above, we can
consider the change in the value resulting from flipping the least

HARMONIC SERIES CONVERGENCE 61

significant bit, B52. This change is a change in the unit of least
precision, and a change of this size is often referred to as one ULP.
Where the difference between the floating point value and the exact
value is important, we will use the typewriter font for N and s.

3. Estimates

As a crude estimate, since we know a double precision floating
point has a significand of 52 bits, and the partial sums sN are always
bigger than 1, it must converge before term 252+1, as at this point
adding each 1/N will give a result that is small enough so it won’t
be rounded up to the next number.

We can improve on this estimate, as we know that the sum will
be somewhat bigger than one. Denoting by bxc2, the largest power
of two less than x, the sequence will stop increasing when

1

N
< 2−52−1bsNc2

By using Euler’s estimate for the harmonic sum [1], we know sN ≈
sN ≈ log(N) + γ where

γ = 0.57721566490153286060651209008240243104215933593992 . . .

We can convert this to

253 < N(blog(N) + γc2),

which happens when N > 248. We expect a value of sN close to

log(248) + γ = 33.8482803317789077 . . . ,

though there may have been significant accumulation of rounding
errors in the sum. We can, however, get a bound on this error;
in round-to-nearest mode the error in each operation should be
bounded by 0.5 ULP. Concentrating on the errors associated with
the sum1, for each term when the sum is between 1 and 2, we will
have an error of at most 2−53. Similarly, for each term when the
sum is between 2 and 4, the error will will be at most 2−52, and so
on. Thus, if Tr is

Tr = min {n ∈ N : sn > r} ,
1We could also calculate the error associated with evaluating the reciprocals,

however this will be considerably less than 2−53 for most terms. Consequently,
the error terms from the sum dominate.

62 D. MALONE

then we can accumulate these error bounds and bound the error
between sn and the exact sum by

∞∑
n=1

(min(N, T2n)−min(N, T2n−1)) 0.5× 2−52+n−1. (1)

Here, the first expression in parentheses counts the number of terms
before N with the given error. Again, if we are willing to make the
approximation sn ≈ log(n) + γ then we find Tr ≈ er−γ, and we can
easily evaluate this expression numerically and find that we expect
the error at term 248 to be less than 0.921256. . . .

One might also attempt to consider the rounding errors to be
independent random variables. Using ULP2/4 as a bound on their
variance, one might hope to use the central limit theorem to predict
a distribution for the error. However, as n becomes large, the bits of
1/n and 1/(n + 1) that are being rounded are increasingly similar,
and so independence appears a poor assumption.

4. Numerical Results

Evaluating a sum with 248 terms is feasible on modern computer
hardware. Naturally, if parallelisation of the calculation was possi-
ble, the sum could be evaluated on a cluster of computers or CPUs.
However, the intermediate values are important in establishing what
rounding occurs and the final value of the sum.

We evaluated the sum using an AMD Athlon 64 CPU, clocked at
2.6GHz. To avoid the use of extended (80-bit) precision, which is
common on platforms based on the i387 floating point processor,
the operating system was in 64-bit mode, where i387 instructions
are not used. A C program, which explicitly selected the to-nearest
rounding mode, was used to find when the sum converged and to
what value. As predicted, the sum became constant when N > 248.
In this environment, the calculation took a little more than 24 days.

The value of the sum was

s248 = 34.1220356680478715816207113675773143768310546875,

or, the bits of the floating point number were 0x40410f9edd619b06.
The difference between this and Euler’s approximation is 0.2737. . . ,
within our estimated error bound of 0.921256.

HARMONIC SERIES CONVERGENCE 63

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 100 10000 1e+06 1e+08 1e+10 1e+12 1e+14 1e+16

s N
 A

pp
ro

xi
m

at
io

n

N

sequence converges on binary64

Euler Approximation
Calculated to 1e-70

Calculated in binary64

-1

-0.5

 0

 0.5

 1

 1

 1
00

 1
00

00

 1
e+

06

 1
e+

08

 1
e+

10

 1
e+

12

 1
e+

14

 1
e+

16

D
iff

 to
 E

ul
er

 A
pp

ro
x

Calculated to 1e-70
Calculated in binary64

Error bound estimate

Figure 1. Approximations to the partial harmonic
sum. The inset graph shows the distance between Eu-
ler’s estimate and the numerical estimates.

Figure 1 shows Euler’s approximation of the partial harmonic
sums, log(N) + γ, along with the numerical values of sN . For com-
parison, we also used an arbitrary precision calculator to estimate
the value of sN when the rounding error at each step is bounded by
10−70 for smaller values of N . We see that the values agree well,
until we come close to the point where the numerical sN converges.

Also shown in Figure 1 is the difference between Euler’s approxi-
mation and the numerical values. For comparison, the error bound
from (1) is plotted. The differences all fall within the error bound
estimates. We also note that until N > 1013 the accumulated errors
are unlikely to be a serious concern. Finally, observe that both
numerical values diverge from Euler’s approximation when N is
small. This is because the error in Euler’s formula is known to
be O(1/N). If the approximation is improved by including the next
term, γ + log(N) + 1/2N , this discrepancy is corrected.

5. Rounding Up

We can also ask what happens in other rounding modes. If we
round down to the nearest representable floating point number, then
the story will be similar to the previous case. In this case, since the

64 D. MALONE

sum is always rounded down, the sum will become constant when

1

N
< 2−52bsNc2

which we can estimate happens when N > 247. Again, we could
make an estimate of the range of possible numerical values. Using
Euler’s formula directly we can get the upper end of the possible
range. For the lower end, calculating the error due to rounding, we
can use an expression similar to eq. 1, but where the error per term
can be 1ULP, rather than 0.5ULP. Checking numerically2, we find
the sum converges to

32.8137301342568008521993760950863361358642578125

with bit pattern 0x404068284f1d338a at term 247. Figure 2 shows
this to be within the range we expect.

If we round up, the situation is a little more interesting. In this
case, when

1

N
< 2−52bsNc2

we get an increase of one ULP each time the reciprocal is added.
Once this condition is met, at term 247, the sum begins to act like
a counter, beginning at s247 and incrementing by one ULP for each
value of N, beginning at 247. However, when N reaches 253, not
all integers can be exactly represented as floating point numbers.
So, because we are in round-up mode, each increment of N actually
results in N being increased by two (which is one ULP for N). Thus,
after a further 252 steps, we reach 254 when the increments in N result
in N being increased by 4, and so on.

Thus, after 252 loop iterations, N and s are both incremented by
one ULP for each iteration. At iteration 252, N has value 252 and s

has value of s247 increased by 252 − 247 ULP increments. As s247 �
247, we see that N begins at a larger value, and so will remain ahead in
this curious race. The largest non-special case value of the exponent
is 1023, and will increase by one every 252 iterations, so following
another (1024−52)×252−1 iterations N will reach the largest finite
double value of 21024 − 21024−53.

On the next iteration N will become inf, and then 1/inf is zero.
At this point, the sum will no longer increase! We conclude that

2Some additional care is required here, because if the compiler does constant
folding, it will probably be done in the default mode (round to nearest). To avoid
such issues, we disabled optimisation when compiling.

HARMONIC SERIES CONVERGENCE 65

-1

-0.5

 0

 0.5

 1

 1 100 10000 1e+06 1e+08 1e+10 1e+12 1e+14 1e+16

D
iff

er
en

ce
 to

 E
ul

er
 A

pp
ro

xi
m

at
io

n

N

Error bound estimate
round to nearest

round up
round down

 0
 5

 10
 15
 20
 25
 30
 35
 40

 1

 1
00

 1
00

00

 1
e+

06

 1
e+

08

 1
e+

10

 1
e+

12

 1
e+

14

 1
e+

16

s N
 A

pp
ro

x

Euler Approx
round to nearest

round up
round down

Figure 2. Differences between floating point estimates
of the partial harmonic sum and Euler’s approximation
in round-to-nearest, round-up and round-down mode.
The inset graph shows the actual values of the estimates.

sN converges to a fixed value at this point. This happens after
252 + (1024− 52)× 252 loop iterations, when sN will have increased
by 252 − 247 + (1024 − 52) × 252 = 973 × 252 − 247 ULPs above its
value at s247.

While evaluating 937× 252 loop iterations is not practical, we can
evaluate s247 numerically in round-up mode, and we get

33.66247161023633083232198259793221950531005859375,

with bit pattern 0x4040d4cbdea63f2b. If we treat this pattern as
a hexadecimal integer, then each ULP increment will increase it by
one, giving
0x4040d4cbdea63f2b + 937 × 252 − 247 = 0x7d1054cbdea63f2b.
Interpreting this as a floating point number, we get

4596834217901867× 2926.

Figure 2 shows the values of the sum in round-up, round-down and
round-to-nearest mode compared to the value of Euler’s approxima-
tion, up to the point where they stop increasing or increase by one
ULP. The upper error estimate is for the sum in round-up mode and
the lower error estimate is the corresponding value for round-down
mode. Unsurprisingly, at a particular N values the rounded-up sN

66 D. MALONE

values are larger than the round-to-nearest values, which are larger
than the round-down values.

6. Conclusion

We have looked at the behaviour of the floating point versions of
the harmonic series, and shown that we can actually give bounds
on how they should behave. Modern PCs are capable of evaluat-
ing enough terms of the sequence to establish the values that the
numeric sequence converges to in each rounding mode. We leave
open the question of what happens if we use Algorithms other than
Algorithm 1, for example if we sum the terms in the order suggested
by Huffman Coding [4].

References

[1] L. Euler. De progressionibus harmonicis observationes. Commentarii
academiae scientiarum Petropolitanae, 7:150–161, 1740.

[2] IEEE Working Group for Floating-Point Arithmetic. 754-1985 — IEEE stan-
dard for binary floating-point arithmetic. pages 1–20, 1985.

[3] IEEE Working Group for Floating-Point Arithmetic. 754-2008 — IEEE stan-
dard for floating-point arithmetic. pages 1–82, 2008.

[4] David A. Huffman. A method for the construction of minimum-redundancy
codes. Proceedings of the Institute of Radio Engineers, 40:1098–1101, 1952.

[5] Niall Madden. John Todd and the development of modern numerical analysis.
Bulletin of the Irish Mathematical Society, (69):11–23, Summer 2012.

David Malone received B.A.(mod), M.Sc. and Ph.D. degrees in mathematics

from Trinity College Dublin. He is a Stokes lecturer at Hamilton Institute, NUI

Maynooth where he works on applications of mathematics to networks.

Hamilton Institute, National University of Ireland Maynooth
E-mail address : David.Malone@nuim.ie

	1. Introduction
	2. Floating Point
	3. Estimates
	4. Numerical Results
	5. Rounding Up
	6. Conclusion
	References

