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The Decomposition of Lie Derivations

CHARLES J. READ

Abstract. A linear map D : A → E, where A is an alge-
bra and E an A-bimodule, is a Lie derivation if D([a, b]) =
[a, D(b)] + [D(a), b] for every a, b ∈ A. Two examples are a
derivation and a centre-valued trace; there are several theo-
rems asserting that, in certain cases, a Lie derivation from A
to E can be written (in “standard form”) as a sum D = d+τ ,
where d is a derivation and τ is a centre-valued trace. These
go back to a ring-theoretic theorem of M. Bresar [1]. In
the context of Banach algebras, one has a positive result by
Miers [5] in the case when D : M → M where M is a von
Neumann algebra. M. Mathieu and A. R. Villena [6], [7] have
generalised this to a full, positive result in the case of general
C∗-algebras. Questions of automatic continuity also arise in
the Banach algebra setting, and positive results are achieved
by Berenguer and Villena ([2], [3]) when D : A → A where A
is a semisimple Banach algebra. In this paper, we start at the
other end of this line of enquiry and give some examples of
Lie derivations on Banach algebras that cannot be written in
standard form. In a related result, we give some examples of
discontinuous derivations from semisimple Banach algebras
A, such that the separating subspace of the derivation does
not lie in the centre of the bimodule.

1. Indecomposable, Continuous Lie Derivations

Definition 1. A Lie derivation D will be said to be standard if it
can be written as a sum D = d + τ as in the Abstract; we do not
require d or τ to be continuous. Otherwise, D is nonstandard.
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In this section we shall exhibit some continuous, nonstandard Lie
derivations on Banach algebras. In the radical case the underlying
algebra can be finite dimensional, but not in the semisimple case. In
both cases, the infinite dimensional version of the example can be
varied so that it becomes discontinuous.

Before considering Banach algebras, let us first consider a graded
algebra A =

⊕∞
n=0A(n) (i.e., every x ∈ A is uniquely written as a

finite sum
∑N

n=0 x(n), x(n) ∈ A(n), and A(n) · A(m) ⊂ A(n+m)). It is
a fact that the map d : A → A with d(

∑N
n=0 x(n)) =

∑N
n=0 nx(n) is

a derivation. In the normed algebra context, it is never continuous
unless the subspaces A(n) are eventually zero — which would mean
that, assuming A(0) = C, A would necessarily be a nilpotent algebra
with unit adjoined. But though the sequence of subspaces must still
terminate, the conclusion that A must be nilpotent is no longer true
if we make a similar definition with Lie derivations in mind.

Definition 2. A Lie graded algebra is an algebra A =
⊕∞

n=0A(p)n,
such that every x ∈ A is uniquely written as a finite sum

∑N
n=0 x(p)n,

x(p)n ∈ A(p)n, and the commutators [A(p)n,A(p)m] ⊂ A[n+m] for
every n and m. A Lie graded Banach algebra is the completion of a
Lie graded algebra A equipped with an algebra norm such that the
subspaces A[n] are closed.

Let’s give an example of a Lie graded algebra that is not (with the
same grading) a graded algebra. Let F be the free unital complex
algebra on three generators a, b and c. Let I1 ⊂ F be the 2-sided
ideal generated by the commutators [F ,F ], and let I2 ⊂ I1 be the
2-sided ideal generated by the commutators [F , I1]. Let A = F/I2,
so there are natural quotient maps q2 : F → A and q1 : A → F/I1.

Now F is a graded algebra; F =
⊕∞

n=1 F (n), where F (0) = C, and
for n > 0, Fn is the finite dimensional linear subspace of F spanned
by the “words” of length n in the three generators a, b and c. In
view of the fact that [Fr,Fs] ⊂ Fr+s it is plain that I1 is a graded
ideal, I1 =

⊕∞
n=1 I1

n where I
(n)
1 = F (n) ∩ I1. Then [F (r), I

(s)
1 ] ⊂

F (r+s) ∩ I1 = I
(r+s)
1 , so I2 also is graded, I2 =

⊕∞
n=1 I

(n)
2 where

I
(n)
2 = F (n) ∩ I2. The quotient maps q2 and q1 are homomorphisms

of graded algebras.
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There is a natural inner product on F such that, if w, w′ are
“words” in the three generators, we have

< w, w′ >=

{
1
n! , if w = w′ ∈ F (n);
0, otherwise.

The presence of the factors 1
n! ensures that the Euclidean norm ‖ · ‖2

associated with this inner product is an algebra norm, and the de-
composition F =

⊕∞
n=1 Fn is of course orthogonal. This is the norm

we shall use on F when we want to get a radical Banach algebra with
unit adjoined, indeed, a radical operator algebra.

Now every graded subspace M ⊂ F such as I1 or I2 is closed
in (F , ‖ · ‖2) (after all, the grading is an orthogonal direct sum and
the components of the grading are finite dimensional), and there
is an orthogonal projection P : F → M because it is none other
than

∑∞
i=1 Pi, where Pi is the orthogonal projection F (i) → M(i).

So when we need a continuous projection P : A → I1/I2 = ker q1,
plainly we can use the orthogonal projection P : F → I1.

But when we want a semisimple example we shall go for the l1
norm on F , that is if x =

∑n
i=1 λiwi ∈ F where the wi are distinct

words in the three generators, we define

‖x ‖1 =
∑

−i = 1n|λi|.
In this case it is useful to us that in fact P is ‖ · ‖1-continuous as

well. The reason is as follows.
If w = α1α2 . . . αn is a word of length n (each αi ∈ {a, b, c}), and

π ∈ Sn, the symmetric group on n elements, then we write wπ =
απ(1)απ(2) . . . απ(n); and plainly each difference w − wπ lies in the
commutator ideal I1, whereas the average 1

n!

∑
π∈Sn

wπ is orthogonal
to u1[u2, u3]u4 for any 4 words u1, u2, u3 and u4 (including the trivial
word 1), and so is orthogonal to I1. Thus the orthogonal projection
P : F → I1 sends each ‖ · ‖1 unit vector w to w − 1

n!

∑
π∈Sn

wπ;
hence ‖ I − P ‖1 = 1; so the projection P : A = F/I2 → I1/I2 also
satisfies ‖ I − P ‖1 = 1. With respect to either norm, we have a
decomposition

A = Ker P ⊕ Im P

with a continuous projection P . Writing A[1] = kerP and A[2] =
Im P , the decomposition A = A[1] ⊕ A[2] is a Lie grading, because
if x, y ∈ A[1] then [x, y], being a commutator, lies in A[2], while if
x ∈ A = F/I2 and y ∈ A[2] = I1/I2 then [x, y] ∈ [F , I1]/I2 =
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I2/I2 = (0). So there is a Lie derivation D : A → A, D(a[1] +a[2]) =
a[1] + 2a[2] for any a[i] ∈ A[i]. D extends continuously to a Lie
derivation on the completion of either normed algebra (A, ‖ · ‖1) or
(A, ‖ · ‖2). We claim that in neither case can D be decomposed
(continuously or otherwise) into a sum d + τ , with d a derivation
and τ a centre-valued trace.

Let’s write Ai for the completion of (A, ‖ · ‖i) (i = 1, 2). Now
the subspaces A(n) are finite-dimensional and mutually orthogonal,
and with respect to the ‖ · ‖1 norm the natural projection Pn onto⊕n

i=0A(n) has norm 1; so for any finite-dimensional subspace U of
the original, incomplete normed algebra F , the orthogonal projection
from A onto q2(U) will be continuous with respect to the ‖ · ‖1 norm
as well as the Euclidean norm ‖ · ‖2 (for one obtains it by composing
PN , for suitably large N , with a necessarily continuous operator on
the finite-dimensional normed space Im PN ). Let us abuse notation
slightly by suppressing the quotient map q2 and regarding a, b etc. as
elements of A. With respect to either norm, if D = d + τ : Ai → Ai

we may write
d(a) = λa + α, d(b) = µb + β, (1)

where α ⊥ a and β ⊥ b. Now τ(a) = (1 − λ)a − α, hence τ(a)b =
(1 − λ)ab − αb (with αb ⊥ ab, ba); and bτ(a) = (1 − λ)ba − bα with
bα ⊥ ab, ba. Therefore

[τ(a), b] = (1− λ)[a, b] + (bα− αb), (2)

with bα − αb orthogonal to lin(ab, ba). Now any “double commuta-
tor” x ∈ [F , I1] is a linear combination of words of length at least 3,
so in our original grading we have I

(2)
2 = (0). It follows that even in

A = F/I2, we have ‖ [τ(a), b] ‖i ≥ 2|1− λ| (if i = 1), or
√

2|1− λ| (if
i = 2). Since τ is by hypothesis centre-valued, it follows that λ = 1,
and similarly µ = 1. Given d(a) = a+α and d(b) = b+β, we obtain

d(ab) = (a + α)b + a(b + β) = 2ab + αb + aβ, (3)

where aβ + αb will be orthogonal to both ab and ba.
Now the decomposition of ab into A[1]⊕A[2] is (I−P )(ab)+P (ab)

= ab+ba
2 + ab−ba

2 +I2. Therefore D(ab) = ab+ba
2 +2(ab−ba

2 ) = 3ab/2−
ba/2 + I2. Accordingly τ(ab) = D(ab)− d(ab) = −ab−ba

2 − αb− aβ,
where both αb and aβ will be orthogonal to lin(ab, ba). Then

[τ(ab), c] =
cab + cba− abc− bac

2
+ [c, αb + aβ], (4)
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where [c, αb + aβ] will be orthogonal to every permutation (abc)π

of abc. Writing U = lin{(abc)π : π ∈ S3}, we recall that I1 is the
linear span of vectors u1[u2, u3]u4 for all words ui; so I2 is the linear
span of vectors x = v1[v2, u1[u2, u3]u4]v3. The only way such an
expression can involve words of length 3 is if v1, u1, u4 and v3 are
all 1, so x = [v2, [u2, u3]]; and to get an answer not orthogonal to
U the words v2, u2, u3 must be a, b and c in some order. In that
case, the vector x lies in U itself; so I2 = (I2 ∩U)⊕ (I2 ∩U⊥), with
I2 ∩ U = lin([a, [b, c]], [b, [c, a]]) = lin(abc − acb − bca + cba, bca −
bac − cab + acb), which is orthogonal to cab+cba−abc−bac

2 . So if Q
denotes the (continuous!) orthogonal projection from A onto q2(U),
we find that Q[τ(ab), c] = cab+cba−abc−bac

2 + I2, a nonzero result.
This contradicts the assumption that τ is centre-valued, so the Lie
derivation D is indeed nonstandard.

Now our argument also shows that the distance of the linear op-
erator D : A → A from the set of all operators d + τ , d a deriva-
tion and τ a centre-valued trace, is strictly positive. For if λ and
µ are the constants in (1), the equation ‖D − d− τ ‖i < ε implies
|1 − λ| < 2ε and |1 − µ| < 2ε because of (2); Equation (3) then
becomes d(ab) = νab + αb + aβ, where |2− ν| < 4ε and aβ + αb will
be orthogonal to both ab and ba; using ‖D − d− τ ‖ < ε again, we
get

∥∥∥ [τ(ab), c]− ν(cab + cba− abc− bac)
2

− [c, αb + aβ]
∥∥∥ < 2ε (5)

by analogy with (4); and this is a contradiction for small ε > 0.
So the abstract algebra result that not every Lie derivation is stan-

dard extends in the fullest possible way to the continuous situation
where we have a Banach algebra involved. One can form the Banach
space of continuous Lie derivations on Ai, and one can consider the
subspace of standard continuous Lie derivations on Ai, where the
decomposition may or may not involve continuous d and τ ; but even
then, relaxing the conditions as much as we can, our subspace is not
dense.

Our example A2 is clearly radical with adjoined unit; the example
A1 is quotient of the semisimple Banach algebra l1(S), S the free
semigroup on 3 generators, and we can define our Lie derivation as a
map D1 : l1(S) → A1, thus obtaining an nonstandard Lie derivation
from a semisimple Banach algebra to a bimodule. But it is not quite
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obvious to the author that A1 is itself semisimple, though it clearly
isn’t radical.

2. Discontinuous Examples and Other Variants

One may now vary the Lie grading of Ai so as to obtain a discon-
tinuous such example, as follows. The original Lie derivation took
an element x ∈ Ai and decomposed it x = x[1] + x[2], where x[j] lies
in the closure A[j] of A[j] in the completion Ai of (A, ‖ · ‖i). Let
us now pick (using the axiom of choice!) an alternative complement
B[1] for A[2] in Ai, so that the projection onto A[2] parallel to B[1] is
no longer continuous. If we decompose x as x1 + x2 with respect to
this Lie grading, we may define D2(x) = x1 +2x2 (the Lie derivation
associated with the grading), and D2 is still nonstandard for similar
reasons to the above, but no longer continuous. But because A[2]

is closed, the separating subspace of D2 will be contained in A[2],
which is contained in the centre of Ai. We can only perturb our
example by a discontinuous, centre-valued trace by this method.

Our example can be made finite dimensional by quotienting A out
further by the ideal K =

⊕∞
n=4A(n). Because our quotient maps

all respect the original grading A = ⊕A(n), the subspace of words
of length 3 or less is untouched by this process; so our argument
that the Lie derivation D : A/K → A/K is nonstandard remains
valid. That example is a finite dimensional nilpotent algebra with
unit adjoined.

3. The Separating Subspace of a Derivation

Now the study of derivations is full of beautiful automatic continuity
results. It is of interest whether a Lie derivation has some of the
same behaviour; or whether it may fail to be continuous in such a
way as to show it is very far from being standard. However, a famous
theorem of Johnson and Sinclair asserts that a derivation d : A → A
is automatically continuous if A is a semisimple Banach algebra.
This result has been generalised by Berenguer and Villena [2] in the
following way: if A is a semisimple Banach algebra and D : A →
A is a Lie derivation, then the separating subspace of D must be
contained in the centre of A. Such a map clearly differs from one in
standard form only by a continuous perturbation.
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Problem 3. Thus it would be nice to know if one can have any
Lie derivation D from a Banach algebra to itself, such that D re-
mains nonstandard even after continuous perturbation (if D′ is an-
other Lie derivation such that D−D′ is continuous, then D′ is non-
standard). As mentioned above the Banach algebra involved cannot
be semisimple.

In this section we give a counterexample to a more optimistic
hypothesis, namely that any Lie derivation from a semisimple Ba-
nach algebra will be nonstandard, provided the separating subspace
doesn’t lie inside the centre. The reason why this is false is simple;
the assertion that derivations are automatically continuous is false
for a general derivation d : A → E into a bimodule, even if the alge-
bra A is semisimple. In fact one can have discontinuous derivations
d : A → E whose separating subspace does not lie inside the centre
of the bimodule E; here is an example.

Perhaps the simplest case of a derivation that does not map into
the centre of the bimodule is as follows; let A be the algebra of upper
triangular 2×2 matrices over C; and let E ⊂ A be its radical, namely

the “strictly upper triangular matrices” E =
{(

0 b
0 0

)
: b ∈ C

}
. A

acts on E in the obvious way, but E is not a commutative bimodule

because e.g.
(

1 0
0 0

)
·
(

0 1
0 0

)
6=

(
0 1
0 0

)
·
(

1 0
0 0

)
. So the centre of

the A-bimodule E is (0), and d :
(

x y
0 z

)
→

(
0 y
0 0

)
is a nonzero

derivation into E.
We can make the above into an infinite dimensional example in

either of the following two ways. Method 1 is as follows:
If E,F are two Banach spaces let’s write B(E, F ) for the space

of bounded linear maps from E to F ; and K(E, F ) for the space
of compact operators from E to F ; and W(E,F ) for the space of
weakly compact operators. When E = F we will write B(E), K(E)
and W(E) respectively. Now for 1 ≤ p < q < ∞, it is well known
that B(lq, lp) = K(lq, lp) (every bounded linear map from lq to lp is
compact). So let A0 = B(lq ⊕ lp) and let π be the quotient map
from A0 to A1 = B(lq ⊕ lp)/K(lq ⊕ lp). Every T ∈ A1 is naturally

represented as a 2 by 2 matrix with operator entries, T =
(

X Y
0 Z

)

with X ∈ B(lq)/K(lq), Y ∈ B(lp, lq)/K(lp, lq) and Z ∈ B(lp)/K(lp).
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The ideal E ⊂ A1 with E = {
(

0 Y
0 0

)
: Y ∈ B(lp, lq)/K(lp, lq)} is a

BanachA1-bimodule, and indeed a BanachA0-bimodule via the quo-

tient map π. We define a map d0 : A0 → E with d0(a) =
(

0 Y
0 0

)
,

where π(a) =
(

X Y
0 Z

)
; d0 is a continuous derivation. One can

make d0 discontinuous, and have the separating subspace not in the
centre, in the following way. Let U ⊂ A1 be the set of all operators

represented as T =
(

λIq Y
0 µIp

)
, with Y ∈ B(lp, lq)/K(lp, lq), and

Ip and Iq the identities of B(lp)/K(lp) and B(lq)/K(lq) respectively.
Let A = π−1(U) ⊂ A0. Now though A is not the whole of B(lq⊕ lp),
it is nonetheless a subalgebra containing the finite rank operators —
so A is semisimple (every Banach operator algebra is semisimple).

To introduce some discontinuity, let

φ : B(lp, lq)/K(lp, lq) → B(lp, lq)/K(lp, lq)

be any discontinuous linear map; and let d : A → E be the map with

d(a) =
(

0 φ(Y )
0 0

)
, where π(a) =

(
λIq Y
0 µIp

)
. It is easily checked

that d is a derivation, for if a′ ∈ A with π(a′) =
(

λ′Iq Y ′

0 µ′Ip

)
then

π(aa′) =
(

λλ′Iq λY ′ + µ′Y
0 µµ′Ip

)
,

d(aa′) =
(

0 λφ(Y ′) + µ′φ(Y )
0 0

)
= a · d(a′) + d(a) · a′.

Thus we obtain discontinuous derivations from the semisimple Ba-
nach algebra A, into a Banach A-bimodule E whose centre is zero.
It is an interesting special case when the rank of the discontinuous
linear map φ is equal to 1; in that case, we obtain discontinuous, non-
commutative point derivations (i.e., discontinuous derivations into C,
where the left action of A on C is not the same as the right action —
there are two different characters involved, given by the parameters
λ and µ involved in π(a) above).

For Method 2, we observe that exactly the same idea can be fol-
lowed with algebras B(X)/W(X), provided we choose the underly-
ing Banach space X appropriately. One choice is to use the James
p-spaces Jp (for a definition see e.g. Singer [9] or Read [8]); for if
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1 ≤ p < q < ∞ then B(Jq, Jp) = W(Jq, Jp) but not the other way
around.

Now the quotient space B(Jq)/W(Jq) is famously 1-dimensional,
so for our purposes here we let J∞p denote the l2-direct sum of count-
ably many copies of Jp, and we define a new Banach algebra A1 =
B(J∞q ⊕ J∞p )/W(J∞q ⊕ J∞p ), whose elements are represented T =(

X Y
0 Z

)
with X ∈ B(J∞q )/W(J∞q ), Y ∈ B(J∞p , J∞q )/W(J∞p , J∞q )

and Z ∈ B(J∞p )/W(J∞p ). If π is the quotient map B(J∞q ⊕J∞p ) → A1

we take A = π−1{
(

λIq Y
0 µIp

)
}, where Ip and Iq are the iden-

tities of B(J∞p )/W(J∞p ) and B(J∞q )/W(J∞q ); and one can obtain

discontinuous derivations into the bimodule E = {
(

0 Y
0 0

)
: Y ∈

B(J∞p , J∞q )/W(J∞p , J∞q )} by the same method as above.
So one can obtain derivations whose separating subspace does not

lie in the centre of the bimodule very easily, by arranging that though
the algebra involved is semisimple, it has quotient spaces with infinite
dimensional radicals; in the case A = B(X), one can quotient out by
K(X) or W(X) for this purpose, provided X is chosen appropriately.

One final problem arises from our study of Lie graded algebras; in
our examples the grading tends to terminate (later A[n] are all zero)
after n = 2.

Problem 4. Give further nontrivial examples of Lie graded Banach
algebras (where we consider the example trivial if it is a graded Ba-
nach algebra with the same grading). Given such an example with all
the subspaces A[n] nonzero, is there a (necessarily discontinuous) Lie
derivation D on A such that D|A[n] is equal to n times the identity,
for each n?
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