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1. Introdution

Geneti Algorithms (GAs) are a speial type of evolutionary

algorithms, algorithms that simulate biologial proesses to solve

searh and optimization problems. They were introdued by John

Holland in 1975 [H℄. Given a spei� problem, potential solutions

are typially enoded as bit strings, onstituting a population.

The bit strings are allowed to reprodue on the basis of their

�tness, thus forming a new population. Iterating this proess, the

population evolves aording to a `natural seletion and survival of

the �ttest' proess similar to the one desribed by Charles Darwin

in The Origin of Speies. If the GA is implemented suessfully,

the �nal population should onsist of maximally �t individuals,

approximating an optimal solution for the problem at hand.

The suess or failure of a GA for a ertain problem is

strongly dependent on the enoding and several parameters that

we will introdue later.

GAs have been implemented for a wide variety of problems,

both real-world (e.g. sheduling eletriity generation [A℄) and

abstrat (e.g. solving NP-omplete problems [D℄). The bulk of the

GA literature is onerned with pratial appliations. For a very

omplete bibliography, see [G2℄, whih ontains more than 4000

entries !

In this artile we present mathematial models that have

been introdued to study the behaviour of GAs. A lot of work in
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this area still has to be done, as a omplete understanding of what

happens does not exist yet.

2. Terminology

In this setion we will give a brief overview of the GA terminology.

For more detailed information, the reader an onsult [B℄, [W℄, the

lassis [H℄ and [G1℄ or the more reent [M℄.

We will �rst introdue the relevant onepts as they appear

in the literature. Some of them are usually not de�ned in a very

(mathematially) rigorous way. For now we will follow this tradi-

tion, so that we an move on to the desription of the GA as soon

as possible. The reader need not pani however, we will make

them preise in Setion 5.

Consider the binary alphabet � = f0; 1g. (In general other

alphabets an be used.) An ordered sequene

a = a

`�1

a

`�2

� � � a

1

a

0

; a

i

2 �

is alled an individual or a hromosome or a string of length `

with genes a

i

at lous i. (In general genes an ontain more than

one letter of the alphabet. Chromosomes an be more omplex,

e.g. diploid | ontaining two sequenes | instead of haploid |

onsisting of only one sequene.) Note that we read a string from

right to left.

Fix ` and let 
 = f0; 1g

`

, the set of all possible length `

strings over �. A population of size n is a multi-set of n elements

of 
 (i.e. a partiular string an our more than one).

Let P be a population of size n onsisting of length ` strings.

A �tness funtion is a map f : P ! R

+

; x 7! f(x). We all f(x)

the �tness (value) of the string x. The �tness funtion is determ-

ined by the problem at hand. (For example in an optimization

problem it an usually be taken to be the funtion one wants to

optimize.) The hoie of the �tness funtion is one of the fators

that determines the suess or the failure of the GA.

Seletion is an operator that maps a string to multiple opies

of itself aording to its �tness value. Crossover is an operator

that maps two strings (parents) to two new strings (o�spring)

and that is applied with a probability p



on individual strings.
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Several di�erent rossover operators are in use. The simplest one

is one-point rossover: given two length ` bit strings a and b, a

lous i is seleted randomly (0 � i � `� 2) and two new strings

are formed by swapping the substrings of a and b starting at lous

i+ 1, again reading from right to left.

Mutation is an operator that is applied with a probability

p

m

(usually low, e.g. p

m

= 0:001) to a string a by piking a lous

0 � i � `� 1 randomly and replaing the bit a

i

by a

i

+ 1 mod 2

(i.e. 0$ 1).

There are many varieties of seletion, rossover and muta-

tion. The partiular varieties hosen and the �ne-tuning of the

probabilities p



and p

m

an have a big inuene on the perform-

ane of the GA. Other operators have been de�ned in the literature.

3. The Simple Geneti Algorithm

All GAs an be viewed as modi�ations of a basi one, the Simple

Geneti Algorithm (SGA), that we will desribe in this setion.

Suppose that we are given a learly de�ned problem, that an-

didate solutions are enoded as bit strings of length `, that the

population size is n and that a �tness funtion f is de�ned. Then

the SGA onsists of the following steps:

� Start with random population P (0) of size n onsisting of binary

strings of length `.

�Until the system stops improving, repeat the following proedure,

starting with t = 0:

� Consider population P (t).

� Calulate the �tness f(i) of every string i in P (t).

� Seletion. Selet n strings from P (t) aording to their

relative �tness. These strings onstitute an \intermediate

population", alled the gene pool.

� Reombination. Construt new population P (t + 1) as

follows:

As long as size of P (t+ 1) < n repeat the following steps:

{ Randomly selet 2 parents from the gene pool.
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{ Crossover. Generate two o�spring by means of one-

point rossover. If no rossover takes plae, form two

o�spring by loning the parents.

{ Mutation. Mutate the o�spring.

{ Plae the resulting strings in P (t+ 1).

� Inrement t.

Eah iteration of this proess is alled a generation. The

entire set of generations is alled a run.

4. Holland's Shema Theorem

The �rst attempt to explain rigorously the behaviour of GAs was

made by John Holland [H℄. We will briey explain his idea. The

set 
 = f0; 1g

`

an be onsidered as onsisting of the verties of an

`-dimensional ube. A given bit string x is an element of several

hyperplanes in this `-ube. Holland alls a hyperplane a shema.

A shema H an ontain several bit strings. The average �tness

of a shema H is the average �tness of all x 2 H . The idea is that

at a given generation, while the GA is expliitly evaluating the

�tness of the n strings in the population, it is impliitly estimating

the average �tness of a muh larger number of shemata. Holland

alls this behaviour impliit parallelism.

Consider the alphabet �

0

= f0; 1; �g. A shema an be

viewed as an element of �

0

`

. For example, when ` = 3, the strings

010 and 011 are both elements of the shema 01�. The order o(H)

of a shemaH is equal to the number of de�ned bits. (E.g. 1�0 has

order 2.) The de�ning length Æ(H) of a shema H is the distane

between the outermost de�ned bits. (E.g. Æ(0 � 1) = 3� 1 = 2.)

The approximate dynamis of the inrease and derease in

shema instanes is desribed by the Shema Theorem, whih

roughly states that short, low-order shemata with above average

�tness will reeive exponentially inreasing numbers of samples

over time. It gives a lower bound on the expeted growth of the

number of instanes of a shema from one generation to the next.

Reently, Vose has argued that this theorem is not useful at all

[V2℄.
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5. The In�nite Population Model

In this setion we will desribe Vose and Liepins' formalization of

the SGA. They model geneti searh diretly instead of looking at

shemata as in Holland's model. This aount is based on [V1℄,

[N℄ and [M℄. The SGA in this setion is slightly di�erent from the

one presented in Setion 3, in that after rossover only one of the

two o�spring is seleted (at random) and the other one disarded.

This modi�ation simpli�es parts of the formalization.

Again, let 
 = f0; 1g

`

, the set of length-` binary strings.

Let N = j
j = 2

`

. We an view 
 as the set f0; : : : ; N � 1g

by identifying bitstrings with their deimal value. We an also

view 
 as Z=2Z� � � � � Z=2Z, the produt of ` opies of Z=2Z,

the integers mod 2. This allows us to de�ne two group opera-

tions on f0; : : : ; N � 1g: the omponent-wise sum (denoted �) on

the produt group ats as exlusive-or on f0; : : : ; N � 1g and the

omponent-wise multipliation (denoted 
) ats as logial-and on

f0; : : : ; N � 1g.

Let n

t

i

denote the number of instanes of string i in the

population at time t. Let f : 
! R

+

denote the �tness funtion.

Suppose the population size is n.

We introdue a vetor p

t

2 R

N

that represents the popula-

tion at time t. Its omponents are de�ned as follows,

p

t

i

=

n

t

i

n

;

the proportion onsisting of string i in the population at time t.

Another vetor s

t

2 R

N

is de�ned by its omponents as

follows,

s

t

i

=

f(i)n

t

i

P

N�1

j=0

f(j)n

t

j

;

the probability that string i will be seleted for reombination (i.e.

seleted for the gene pool that will be used to onstrut the pop-

ulation at time t+ 1).

Remarks.

� p

t

i

= s

t

i

= 0 when string i is not in the population at time t.
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� p

t

and s

t

both have at most n non-zero entries.

� Sine both p

t

and s

t

have non-negative entries that sum to

1, they are stohasti vetors.

Example. Suppose that ` = 2 and the population onsists of

2 opies of 11 and one opy eah of 01 and 10. Then p

t

=

(0; 0:25; 0:25; 0:5). Suppose that �tness is equal to the number

of ones in the string. Then f(00) = 0, f(01) = f(10) = 1 and

f(11) = 2. Hene

P

j

f(j)n

t

j

= 6. Hene s

t

= (0; 1=6; 1=6; 4=6) =

(0; 0:1667; 0:1667; 0:6667).

Under the assumption that the �tness funtion does not

hange during the evolution of the population, we have the fol-

lowing

De�nition 5.1. The seletion operator F is de�ned to be the

N �N diagonal matrix with F

ii

= f(i); 8i 2 f0; : : : ; N � 1g.

We de�ne a relation � on R

N

n f0g by x � y i� 9� > 0 suh

that x = �y. Clearly � is an equivalene relation. Furthermore,

for any equivalene lass we an always �nd a representative with

norm 1 (y = x=jjxjj � x and jjyjj = 1).

Sine seletion is performed proportional to relative �tness,

we expet the following to hold,

Fp

t

� s

t

:

Indeed, it is easy to show that

(Fp

t

)

k

= fs

t

k

; 8k 2 
:

where

f =

1

n

N�1

X

j=0

f(j)n

t

j

is the average �tness of the population at time t.

In the GA literature the term geneti operator is often used

without being learly de�ned. This shortoming is overome by
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Naudts [N℄ who formalizes the notion of a geneti operator as fol-

lows: onsider a map

G : 
� P

1

� � � � � P

m

! 


where P

1

; : : : ; P

m

are m parameter sets. Usually 1 � m � ` and

P

i

= f0; : : : ; ` � 1g. Values for the parameters will be hosen at

random immediately before the operator is applied.

De�nition 5.2. A map G as de�ned above is a geneti operator

ating on one string i� for eah parameter tuple (p

1

; : : : ; p

m

) 2

P

1

� � � � � P

m

,

G(�; p

1

; : : : ; p

m

) : 
! 


is a bijetion.

Next onsider a map

C : 


2

� P

1

� � � � � P

m

! 


2

where the P

i

's are again parameter sets. Let C

1

denote the �rst

projetion of C and C

2

the seond.

De�nition 5.3. A map C de�ned as above is a geneti oper-

ator ating on a ouple of strings i� for eah parameter tuple

(p

1

; : : : ; p

m

) 2 P

1

� � � � � P

m

,

(1) C((�; �); p

1

; : : : ; p

m

) : 


2

! 


2

is a bijetion;

(2) C

1

((i; j); p

1

; : : : ; p

m

) = C

2

((j; i); p

1

; : : : ; p

m

); 8(i; j) 2 


2

.

Example. Crossover is a geneti operator C : 


2

� P

1

! 


2

.

When two strings i = i

`�1

� � � i

1

i

0

and j = j

`�1

� � � j

1

j

0

are sele-

ted, a rossover point p is seleted at random in P

1

, 0 � p � `� 1

and rossover is applied to the strings i and j as follows,

C((�; �); p) : 


2

! 


2

; (i; j) 7! (i

0

; j

0

);

where i

0

= i

`�1

� � � i

p+1

j

p

� � � j

1

j

0

and j

0

= j

`�1

� � � j

p+1

i

p

� � � i

1

i

0

.

If p = `� 1, no rossover ours and C ats as the identity.
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Remarks.

� If a geneti operator whih normally ats on one string, is to

at on a ouple, it is de�ned to at independently on both

omponents.

� The seond de�nition may be generalized to geneti operat-

ors ating on tuples ontaining more than two strings.

Now the reombination proess an be formalized as follows:

as long as the new population is not full, two strings i and j

are seleted from the gene pool, and a �nite sequene (H

i

)

h

i=1

of

geneti operators is applied to them,

(o

1

; o

2

) = H

1

ÆH

2

Æ � � � ÆH

h

(i; j);

resulting in a ouple (o

1

; o

2

), alled the o�spring of (i; j). Then

one of the two o�spring is hosen with a probability of 0:5 to

ontribute to the next generation.

De�nition 5.4. For every k 2 
 we de�ne an N �N matrix r(k)

with omponents

r

i;j

(k) = P(k results from the reombination proess

based on parents i and j):

These matries are alled reombination probabilities. They have

the following properties:

�

P

N�1

k=0

r

i;j

(k) = 1; 8i; j 2 
;

� r

i;j

(k) = r

j;i

(k); 8i; j; k 2 
.

In what follows we will require that reombination onsists of

a sequene of geneti operators whih ommute with group trans-

lation. In other words:

� If a geneti operatorX ats on one string only, we must have

k � l = X(i) () k = X(i� l)

for all parameters of X (left out here for onveniene).
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� If a geneti operator C ats on 2 strings, we must have for

the projetions C

1

and C

2

that

k � l = C

m

(i; j) () k = C

m

(i� l; j � l) (m = 1; 2):

It is easily observed that both one-point rossover and muta-

tion ommute with group translation.

The following result is now obvious,

Lemma 5.1. The reombination probabilities satisfy

r

i;j

(k � l) = r

i�l;j�l

(k):

De�nition 5.5. M is de�ned to be the N � N matrix having

entries m

i;j

= r

i;j

(0).

The following theorem shows that for the purpose of reom-

bination it is suÆient to know the matrixM . That is why we all

M a mixing matrix.

Theorem 5.1. The matrix M determines the matries r(k), is

nonnegative and symmetri and satis�es

X

k

m

i�k;j�k

= 1; 8i; j 2 
:

Proof: From the previous lemma we have that

r

i;j

(k) = r

i�k;j�k

(0) = m

i�k;j�k

; 8i; j; k 2 


and the reombination probabilities sum to 1. M is nonnegat-

ive sine its elements are probabilities and symmetri beause the

reombination probabilities are symmetri.

To get M positive rather than nonnegative we have to sup-

pose that mutation is nonzero.
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De�nition 5.6. The Walsh matrix W = (w

i;j

) is de�ned by

w

i;j

=

`

Y

k=1

r

k(bi2

`�k

 mod 2)

(j);

where the Rademaher funtions r

i

: 
! f�1; 1g are given by

r

i

(x) = 1� 2

�

b

x2

i

N

 mod 2

�

:

The Walsh funtions also map to f�1; 1g, are symmetri

and orthogonal,

`�1

X

k=0

w

i;k

w

j;k

=

�

N for i = j

0 for i 6= j

:

Furthermore, the rows of the Walsh matrix are group haraters,

w

i�j;k

= w

i;k

w

j;k

:

Vose and Liepins show that onjugation of the positive matrix M

by W results in a sparse matrix.

De�nition 5.7. The twist ofM , denotedM

�

, is de�ned as follows,

(M

�

)

i;j

= m

i�j;i

:

They also show that onjugation byW triangulates the twist

M

�

of M .

Lemma 5.2. Let E denote expetation, then

E (p

t+1

k

) =

X

i;j

s

t

i

s

t

j

r

i;j

(k):
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Proof: The expeted proportion of string k in the next generation

is omputed by summing over all possible ways of produing k. If

k results from reprodution based on parents i and j, then i (resp.

j) is seleted for reprodution with probability s

t

i

(resp. s

t

j

) and

k is the result of reombination with probability r

i;j

(k).

If we now take the limit as population size n!1, the law

of large numbers gives us p

t+1

k

! E (p

t+1

k

).

De�ne permutations �

j

on R

N

by

�

j

hs

0

; : : : ; s

N�1

i

T

= hs

j�0

; : : : ; s

j�(N�1)

i

T

;

where vetors (between h; i) are regarded as olumns, and T

denotes transpose.

De�ne the operator M by

M(s) = h(�

0

s)

T

M�

0

s; : : : ; (�

N�1

s)

T

M�

N�1

si

T

:

Theorem 5.2. E (s

t+1

) � FM(s

t

).

Proof:

E (p

t+1

k

) =

X

i;j

s

t

i

s

t

j

r

i;j

(k)

=

X

i;j

s

t

i

s

t

j

r

i�k;j�k

(0)

=

X

i�k;j�k

s

t

i�k

s

t

j�k

r

i;j

(0)

= (�

k

s

t

)

T

M�

k

s

t

Sine s

t+1

� Fp

t+1

, the result follows.

The expeted behaviour of a simple GA is therefore determ-

ined by two matries: �tness information appropriate for seletion

is ontained in F and M enodes mixing information appropriate

for reombination.

Furthermore, the relation

s

t+1

� FM(s

t

)
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is an exat representation of the limiting behaviour as population

size n!1.

Based on the previous results Vose and Liepins formalize

the SGA as follows:

De�nition 5.8. Simple geneti searh orresponds to the operator

G = F Æ M, where F is the seletion operator and M is any

mixing matrix satisfying Theorem 5.2 and suh that WM

�

W is

lower triangular. An initial population is modelled by a point

s

0

2 R

N

, and the transition between generations is determined by

s

t+1

� G(s

t

).

This formalization generalizes the reombination indued by

mutation and one-point rossover, and regards GAs with �nite

populations as approximations to the ideal of simple geneti searh.

Vose and Liepins give a geometri interpretation of simple

geneti searh by regarding the operator G as a map G : S ! S,

where S is the set of points with nonnegative oordinates of the

unit sphere in R

N

, sine every equivalene lass of � has a member

of norm 1.

An initial population then orresponds to a point on S, iter-

ates of G are trajetories on S and onvergene of the geneti

algorithm orresponds to a �xed point of G.

The general problem of �nding the �xed points of G was

not solved by Vose and Liepins. They did however study the

�xed points of F and M separately. Fixed points of F (seletion

alone) orrespond to populations that have ompletely onverged

to strings of equal �tness.

Only one lass of these �xed points is stable: the set of �xed

points orresponding to the maximally �t strings in the searh

spae. So, we an interpret F as being a fousing operator that

moves the population towards a state in whih only the maximally

�t individuals of the initial population are present.

Vose and Liepins then investigate the set of �xed points of

M, M

�xed

. They prove a suÆient ondition for a �xed point to

be an attrator:

Theorem 5.3. Let x 2M

�xed

. If the matrix M is positive, then

x is asymptotially stable whenever the seond largest eigenvalue
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of M

�

is less than 1=2.

They also determine the group of symmetries of M

�xed

:

Theorem 5.4. For all j, and for every mixing matrix M ,

M(�

j

x) = �

j

M(x). In partiular, �

j

M

�xed

= M

�xed

, and

v = hN

�1=2

; : : : ; N

�1=2

i 2 M

�xed

.

This last theorem implies in partiular that the dynamial

system on S orresponding to M looks the same at eah member

of the population. In other words, M is a di�using operator.

Based on these qualitative results they shed light on the

phenomenon of puntuated equilibria that typially haraterizes

geneti searh: relatively long periods of no improvement pun-

tuated by quik rises in �tness. Intuitively they arise from the

ombination of the fousing properties of F and the di�using prop-

erties of M. Periods spent near one of the unstable �xed points

of F orrespond to stasis and the periods of rapid improvement

an be aounted for by a movement (under the di�using fore of

reombination) from the viinity of one �xed point to another.

In the ase of one-point rossover with mutation, Vose and

Liepins alulate the matrix M expliitly. Its entries are equal to

m

i;j

=

(1� �)

`

2

(

�

jij

 

1� �+

�

`� 1

`�1

X

k=1

�

��

i;j;k

!

+ �

jjj

 

1� �+

�

`� 1

`�1

X

k=1

�

�

i;j;k

!)

;

where � is the rossover probability, � the mutation probability,

� = �=(1� �), jij is the number of 1's in the bit string represent-

ation of the integer i and

�

i;j;k

= j(2

k

� 1)
 ij � j(2

k

� 1)
 jj:

On the basis of several omputer runs alulating the spe-

trum of M

�

, they �nd support for the following

Conjeture. If 0 < � < 0:5, then
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1. The seond largest eigenvalue of M

�

is 1=2� �.

2. The third largest eigenvalue of M

�

is 2

�

1�

�

`�1

�

�

1

2

� �

�

2

.

This onjeture was later proved by Koehler [K℄, who also

showed:

Theorem 5.5. The entire spetrum of M

�

is given by

1

2

(1� 2�)

jij

�

1�

�wid(i)

`� 1

�

; i = 0; : : : ; 2

`

� 1;

where wid(i) is the di�erene in position of the last 1 bit and the

�rst 1 bit of i. If i has a single 1 bit or i = 0, then wid(i) = 0.

Theorems 5.3 and 5.5 imply that every �xed point of M is

an attrator when 0 < � < 0:5. Finally, Vose and Liepins also give

a plausible argument for v = hN

�1=2

; : : : ; N

�1=2

i (i.e. all possible

strings represented equally) to be the unique �xed point of M.

This still has to be proved though.

� � �

In Part II, whih will appear in the next issue of this Bul-

letin, we will disuss a �nite population model and statistial meh-

anial approahes to modelling GAs.
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