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1. Introdution

Fixed points of funtions and operators are of fundamental import-

ane in programming language semantis, in giving meaning to

reursive de�nitions and to onstruts whih involve self-referene.

It follows, therefore, that �xed-point theorems are also of funda-

mental importane in theoretial omputer siene. Often, order-

theoreti arguments are available, in whih ase the well-known

Knaster-Tarski theorem an be used to obtain �xed points. Some-

times, however, analytial arguments are needed involving the

Banah ontration mapping theorem, as is the ase, for example,

in studying onurreny and ommuniating systems. Situations

arise also in omputational logi in the presene of negation whih

fore non-monotoniity of the operators involved. A suessful

attempt was made in [5℄ to employ metris and the ontration

mapping theorem in studying some problemati logi programs.

These ideas were taken further in [16℄ in examining quasi-metris

and in [17,18℄ in onsidering elementary ideas from topologial

dynamis in this same ontext of omputational logi.

One thing whih emerged from [17℄ was an appliation of

a �xed-point theorem due to Sibylla Priess-Crampe and Paulo

Ribenboim, see [10℄. This theorem utilizes ultrametris whih
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are allowed to take values in an arbitrary partially ordered set

and is a substitute for the ontration mapping theorem. The

inspiration for this result appears to have ome from appliations

within algebra and, in partiular, to ordered abelian groups, and

rings of generalized power series. However, as already indiated,

our interest in it resides in its potential appliations to theoretial

omputer siene.

Our purpose in this note is to give some weight to the pre-

vious sentene by skething the appliation we made in [17℄ of

Theorem 1. Thus, in x2 we briey onsider generalized ultramet-

ris i.e. ultrametris whih take values in an arbitrary partially

ordered set (not just in the non-negative reals) and state the �xed-

point theorem of Priess-Crampe & Ribenboim, Theorem 1. In x3,

we onsider a natural way of endowing Sott domains with gener-

alized ultrametris. This step provides a tehnial tool whih we

need in x4 in applying Theorem 1 to �nding �xed points of non-

monotoni operators arising out of logi programs and dedutive

databases and hene to �nding models for these.

2. Generalized ultrametri spaes:

the �xed-point theorem of Priess-Crampe & Ribenboim

It will be onvenient to give some basi de�nitions in this setion,

and to introdue some notation all of whih is to be found in

[10,11℄.

De�nition 1 (Priess-Crampe & Ribenboim) Let X be a set and

let � be a partially ordered set with least element 0. The pair

(X; d) is alled a generalized ultrametri spae (gum) if d : X �

X ! � is a funtion satisfying the following onditions for all

x; y; z 2 X and  2 �:

(1) d(x; y) = 0 if and only if x = y;

(2) d(x; y) = d(y; x);

(3) if d(x; y) �  and d(y; z) � , then d(x; z) � .

Of ourse, this de�nition is entirely standard exept that the

funtion d takes its values in the set � rather than in the set of

non-negative real numbers, and to that extent is onsiderably more

general. Moreover, as in the lassial ase, one an de�ne \balls"
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in the ontext of generalized ultrametri spaes: for 0 6=  2 �

and x 2 X , the set B



(x) = fy 2 X ; d(x; y) � g is alled a -ball

or just a ball in X . One then has the following elementary fats,

see [10℄.

Fat 1 (1) If � � � and x 2 B

�

(y), then B

�

(x) � B

�

(y). Hene

every point of a ball is also its entre.

(2) If B

�

(x) � B

�

(y), then � 6� � (i.e. � < � if � is totally

ordered).

A substitute in the present ontext is needed for the usual

notion of ompleteness in (ultra)metri spaes, and this is provided

by the notion of \spherial ompleteness" as follows. A generalized

ultrametri spae X is alled spherially omplete if

T

C 6= ; for

any hain C of balls in X . (By a \hain of balls" we mean, of

ourse, a set of balls whih is totally ordered by inlusion.)

A typial example, see [11℄, of a generalized ultrametri

spae is provided by the following funtion spae in whih the

distane between two funtions is the set of points on whih they

di�er, and therefore is not numerial in nature.

Example 1 Take a non-empty set A and a set E with at least

two elements. Let H =

Q

a2A

E and de�ne d : H �H ! P(A) by

d(f; g) = fa 2 A; f(a) 6= g(a)g, where P(A) denotes the power set

of A. Then (H; d;P(A)) is a spherially omplete gum.

A funtion f : X ! X is alled stritly ontrating if

d(f(x); f(y)) < d(x; y) for all x; y 2 X with x 6= y. The fol-

lowing theorem, whih is to be found in [10℄, an be thought of as

an analogue of the Banah ontration mapping theorem.

Theorem 1 (Priess-Crampe & Ribenboim) Let (X; d) be a spher-

ially omplete generalized ultrametri spae and let f : X ! X

be stritly ontrating. Then f has a unique �xed point.

In fat, there are more general versions of this theorem for

both single and multi-valued mappings, see [11℄. As already noted,

it is our belief that this theorem has a signi�ant rôle to play in

theoretial omputer siene in the study of the semantis of logi-

based programming languages. Indeed, some appliations in this

area have been made in [11℄, and we disuss another one here in x 4.
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3. Domains as GUMS

Domains are a speial type of ordered set, as de�ned below. They

were introdued independently by D. S. Sott and Y. L. Ershov as

a means of providing strutures for modelling omputation, and

to provide spaes to support the denotational semantis approah

to understanding programming languages, see [20℄. Usually,

domains are endowed with the Sott topology, whih is one of

the T

0

(but not T

1

) topologies of interest in theoretial om-

puter siene. However, under ertain onditions, to be examined

below, domains an be endowed with the struture of a generalized

ultrametri spae. This is not something normally onsidered in

domain theory but, as we shall see, has interesting appliations to

the semantis of logi programs.

Let (D;v) denote a Sott domain with set D

C

of ompat

elements, see [20℄. Thus:

� (D;v) is a partially ordered set whih, in fat, forms a omplete

partial order (po). Hene, D has a bottom element ?, and the

supremum supA exists for all direted subsets A of D.

� The elements a 2 D

C

satisfy: whenever A is direted and a v

supA, then a v x for some x 2 A.

� For eah x 2 D, the set approx(x) = fa 2 D

C

; a v xg is direted

and x = supapprox(x).

� If the set fa; bg � D

C

is onsistent (there exists x 2 D suh that

a v x and b v x), then supfa; bg exists in D.

Several important fats emerge from these onditions inlud-

ing the existene (indeed onstrution) of �xed points of ontinu-

ous funtions, and the existene of funtion spaes (the ategory

of domains is artesian losed). Moreover, the ompat elements

provide an abstrat notion of omputability.

Example 2 (i) (P(N);�) is a domain whose ompat elements

are the �nite subsets of N .

(ii) The set of all partial funtions from N

n

into N ordered by

graph inlusion is a domain whose ompat elements are the �nite

funtions.

As already noted, domains arry a natural and important

topology alled the Sott topology. Under ertain onditions the
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Sott topology an be generated by a quasi-metri, see [16,19℄,

but is never metrizable. However, by means of a onstrution

similar to that disussed in [19℄, we an endow a domain with

a generalized ultrametri, quite separate from its Sott topology,

and this we disuss next.

Let  denote an arbitrary ountable ordinal i.e. one of the

trans�nite sequene 0; 1; 2; : : : ; !; !+1; !+2; : : : ; !2; !2+1; !2+

2; : : : ; !!; !!+1; !!+2; : : :. Let �



denote the set f2

��

;� < g

of symbols 2

��

whih we order by 2

��

< 2

��

if and only if � < �.

De�nition 2 Let r : D

C

!  be a funtion, alled a rank funtion,

form �

+1

and denote 2

�

by 0. De�ne d

r

: D � D ! �

+1

by d

r

(x; y) = inff2

��

;  v x if and only if  v y for every  2

D

C

with r() < �g:

Then (D; d

r

) is a generalized ultrametri spae said to

be indued by r. Moreover, (D; d

r

) is spherially omplete

provided we impose one standing ondition (SC) on the rank

funtion r: for eah x 2 D and for eah ordinal � < , the set

f 2 approx(x); r() < �g is direted whenever it is non-empty.

Theorem 2 Under the standing ondition (SC) on r, (D; d

r

) is

spherially omplete.

Full details of these results an be found in [17℄. However,

the key to obtaining Theorem 2 is the following lemma whose proof

we sketh here; a key point in the details is that any point of a

ball in a gum is its entre (Fat 1). To simplify notation denote

the ball B

2

��
(x) by B

�

(x).

Lemma 1 Suppose that r satis�es ondition SC, and let B

�

(x) �

B

�

(y). Then the following hold.

(1) f 2 approx(x); r() < �g = f 2 approx(y); r() < �g.

(2) B

�

= supf 2 approx(x); r() < �g and B

�

= supf 2

approx(y); r() < �g both exist.

(3) B

�

v B

�

.

Proof. Sine x 2 B

�

(x), we have x 2 B

�

(y) and hene d

r

(x; y) �

2

��

. So (1) follows immediately from the de�nition of d

r

.

Sine f 2 approx(x); r() < �g is bounded by x, we get (2) from

the onsistent ompleteness of D, see [20℄.

For the third statement:
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Step 1. Suppose B

�

(x) � B

�

(y). Then � < � by Fat 1 sine

�



is totally ordered. Thus B

�

= supf 2 approx(y); r() < �g =

supf 2 approx(x); r() < �g v supf 2 approx(x); r() < �g =

B

�

, and so B

�

v B

�

as required.

Step 2. Now suppose that B

�

(x) = B

�

(y) = B, say.

Subase 1. If � = �, then it is immediate that B

�

= B

�

.

Subase 2. Suppose �nally that � 6= � and suppose in fat that

� < �, so that B

�

v B

�

, with a similar argument if it is the ase

that � < �. We show again that B

�

= B

�

, and it suÆes to obtain

d

r

(B

�

; B

�

) = 0. By de�nition of d

r

; B

�

and B

�

, we see that B

�

and B

�

are both elements of the ball B in question. Suppose that

d

r

(B

�

; B

�

) 6= 0. Then there is a ompat element 

1

suh that

the statement \

1

v B

�

i� 

1

v B

�

" is false. Sine B

�

v B

�

,

it must be the ase that 

1

6v B

�

and 

1

v B

�

. By Fat 1 any

point of a ball is its entre, and so we an take y to be B

�

in the

equation established in (1). We therefore obtain B

�

= supf 2

approx(B

�

); r() < �g. If f 2 approx(B

�

); r() < �g is empty,

then B

�

and B

�

are both equal to the bottom element ? of D and

we are done; so suppose f 2 approx(B

�

); r() < �g 6= ;. Sine



1

v B

�

, there is, by the ondition SC, a ompat element 

2

with

r(

2

) < � suh that 

1

v 

2

v B

�

. But then 

2

6v B

�

otherwise

we would have 

1

v 

2

and 

2

v B

�

leading to the ontradition



1

v B

�

. But now we have a ompat element 

2

with r(

2

) < �

and for whih 

2

6v B

�

and 

2

v B

�

, and this ontradits the fat

that d

r

(B

�

; B

�

) � 2

��

. Hene, B

�

= B

�

as required.

4. Appliations to Computational Logi

Conventional logi programming is onerned with omputation

as dedution (using SLD-resolution) from (possibly in�nite) sets

P of lauses of type

C

1

_ : : : _ C

j

 A

1

^ � � � ^ A

k

1

^ :B

1

^ � � � ^ :B

l

1

(for disjuntive databases) or of type

C  A

1

^ � � � ^A

k

1

^ :B

1

^ � � � ^ :B

l

1

(for programs), where all the A's, B's and C's are atoms in some

�rst order language L, see [8℄ for details. A entral problem in the
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theory is to give a anonial meaning (semantis) to P , and the

standard solution of this problem is to �nd the �xed points of an

operator T

P

determined by P . (This ompares with the problem of

giving semantis to reursive de�nitions or to onstruts involving

self-referene in onventional programming languages. In both

ases, the meaning is taken to be a �xed point of a funtion (or

funtor) whih naturally arises from within the problem.)

For programs, we proeed as follows: form the set B

P

of all

ground (variable-free) atoms in L and its power set I

P

= P(B

P

)

ordered by set inlusion (elements I of I

P

an be naturally iden-

ti�ed with interpretations, inluding the models, for P ). Then

T

P

: I

P

! I

P

is de�ned by setting T

P

(I) to be the set of all

ground atoms C in B

P

for whih there is a ground instane C  

A

1

^ � � � ^ A

k

1

^ :B

1

^ � � � ^ :B

l

1

2

of a lause in P satisfying

I j= A

1

^ � � � ^ A

k

1

^ :B

1

^ � � � ^ :B

l

1

. Some standard fats

onerning T

P

are as follows:

(a) If P ontains no negation symbols (P is positive), then T

P

is

monotone (even ontinuous) and its least �xed point an be found

by applying the Knaster-Tarski theorem (the �xed-point theorem

for pos) and gives a satisfatory semantis for P .

(b) If P ontains negation symbols, then T

P

is non-monotoni

and we fae the diÆulty of �nding �xed points of non-monotoni

operators.

Note 1 There are various ways of onsidering T

P

from the point

of view of a dynamial system, the main issue being to ontrol the

evolution of the iterates T

n

P

(;) or more generally of T

n

P

(I) for some

I 2 I

P

:

(i) Identify I

P

with a produt of two-point spaes endowed with

the produt of the disrete topologies (Cantor spae) and then T

P

an be thought of as a kind of shift operator; this relates to the

work of Christopher Moore in [9℄, see also [21℄.

2

A ground instane of a lause in P is an instane C  A

1

^ � � � ^A

k

1

^

:B

1

^� � �^:B

l

1

of a program lause in whih eah of the atoms C;A

i

; B

j

is an element of B

P

i.e. a lause resulting from a program lause by

assigning all the variable symbols to ground terms.
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(ii) T

P

an be thought of as a mapping on a losed subspae of

the Vietoris spae of B

P

and hene as a set dynamial system, see

[4,18℄.

For databases there are further problems in that the appro-

priate operator T is multi-valued and we want I suh that I 2 T (I)

(a �xed point of T ). We shall not, however, disuss databases as

suh in detail, but instead refer the reader to [7℄ where a multi-

valued version of the ontration mapping theorem an be found,

and also an appliation of it to �nding models of disjuntive data-

bases.

Returning to programs, various syntati onditions, see

[1,2,12,13,14℄, have been onsidered in attempting to �nd �xed

points of non-monotoni operators, inluding the following whih

is one of the most important:

De�nition 3 Let l : B

P

!  be a mapping (a level mapping

3

)

where  is a ountable ordinal. Call P :

(1) Loally strati�ed with respet to l (Przymusinski) if the inequal-

ities l(C) � l(A

i

) and l(C) > l(B

j

) hold for all i and j in eah

ground instane of eah lause in P .

(2) Stritly level-dereasing with respet to l, as in [17,18℄, if the

inequalities l(C) > l(A

i

); l(B

j

) hold for all i and j in eah ground

instane of eah lause in P .

It is known that the lass in (1) has several minimal,

supported

4

models (due to Przymusinski, Gelfond, Lifshitz et

al.) for eah program in the lass. Indeed, it is not a priori lear

whih of these models an be taken to be the natural semantis

for any given program in lass (1), and the hoie depends on

how one attempts to model non-monotoni reasoning. However,

sublass (2) of (1) is interesting in that it is one of the rather

3

Level mappings are used in logi programming in a variety of ontexts

inluding problems onerned with termination, and with ompleteness

and also to de�ne metris, see [2,3,5℄.

4

An interpretation I for P is said to be supported if I � T

P

(I). Suh

interpretations are important in logi programming, and this point is

disussed in [1℄. Sine an interpretation I is a model for P i� T

P

(I) � I,

it follows that a model for P is supported i� it is a �xed point of T

P

.
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rare lasses of programs whih satisfy both of the following two

properties (I) and (II) simultaneously, unlike the lass (1) whih

obviously satis�es (I) but not (II):

(I) It is omputationally adequate i.e. any partial reursive (om-

putable) funtion an be omputed by some program in lass (2),

see [18℄.

(II) For eah program in (2) all the \natural" models oinide { so

there is no argument about whih is best. In fat, this statement

is an improvement on the results obtained by Przymusinski in

[12,13,14℄.

The statement (II) an be established by an appliation of

the ideas disussed earlier by viewing I

P

as a domain whose set

of ompat elements is the set I

C

of all �nite subsets of B

P

, and

we now indiate briey how this is done.

De�nition 4 Let l : B

P

!  be a level mapping. De�ne the rank

funtion r

l

indued by l by setting r

l

(I) = maxfl(A);A 2 Ig for

every I 2 I

C

, with I non-empty, and taking r

l

(;) = 0. Denote the

generalized ultrametri resulting from r

l

by d

l

.

The following theorem was established in [17℄, and we note

that the ondition SC imposed on r (onerning diretedness) is

trivially satis�ed by r

l

.

Theorem 3 Let P be stritly level-dereasing with respet to a

level mapping l. Then T

P

is stritly ontrating with respet to

the generalized ultrametri d

l

indued by l.

It follows from Theorems 1, 2 and 3 that T

P

has a unique

�xed point and therefore that P has a unique supported model.

In turn, it follows that all the standard semantis for P oinide

with the perfet model semantis (due to Przymusinski) whih is

the unique minimal supported model for P .

The interested reader an �nd full details of all the results

disussed in this setion in [17,18℄, and we lose with a ouple of

simple examples of programs whih do not ompute anything in

partiular but whih illustrate how level mappings arise, taking

values in ordinals beyond !.
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Example 3 (1) Let P be the program onsisting of the following

three lauses:

q(o) :p(x);:p(s(x))

p(o) 

p(s(x)) :p(x)

De�ne l : B

P

! ! + 1 by l(p(s

n

(o))) = n and l(q(s

n

(o))) = !

for all n 2 N . Then P is stritly level-dereasing, and the unique

supported model given by Theorem 3 is the set fp(s

2n

(o));n 2 Ng.

(2) This time take P to be as follows:

p(o; o) 

p(s(y); o) :p(y; x);:p(y; s(x))

p(y; s(x)) :p(y; x)

De�ne l : B

P

! !! by l(p(s

k

(o); s

j

(o))) = !k + j, where

!k denotes the k

th

limit ordinal. Then P is stritly level-

dereasing and its unique supported model is fp(o; s

2n

(o));n 2

Ng [ fp(s

n+1

(o); s

2k+1

(o)); k; n 2 Ng.

Example 4 Take the \even numbers" program:

p(o) 

p(s(x)) :p(x)

with the !-level mapping l de�ned by l(p(s

n

(o))) = n. Theorem

3 applies to this program and the set fp(o); p(s

2

(o)); p(s

4

(o)); : : :g

of even numbers is the resulting unique �xed point of T

P

.

Example 5 Consider the following program P :

p(s(o)) :q(o)

p(x) r(x)

r(x)  p(x)
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q(o) 

The set fq(o); p(s

n

(o)); r(s

n

(o))g is a �xed point of T

P

for every

n. Therefore, T

P

an never satisfy the hypothesis of Theorem 3.

In fat, this program is loally strati�ed, but is never stritly level-

dereasing for any level mapping beause of the yle reated by

the seond and third lauses. Suh a yle would be prohibited in

a stritly level-dereasing program, and this example shows that a

loally strati�ed program need not have a ontrative immediate

onsequene operator.
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