Outline Solutions of the Problems for the 39th IMO

1. Choose a coordinate system so that $A C$ and $B D$ are the axes and the points A, B, C, D have coordinates $(0, a),(b, 0),(0, c)$ and $(d, 0)$, respectively. The equations of the perpendicular bisectors of $A B$ and $D C$ are

$$
2 b x-2 a y=b^{2}-a^{2} \text { and } 2 d x-2 c y=d^{2}-c^{2}
$$

respectively. The coordinates of P are obtained by solving these equations. So, P has coordinates (p, q), where

$$
p=\left(a\left(d^{2}-c^{2}\right)-c\left(b^{2}-a^{2}\right)\right) / 2(a d-b c)
$$

and

$$
q=\left(b\left(d^{2}-c^{2}\right)-d\left(b^{2}-a^{2}\right)\right) / 2(a d-b c) .
$$

Since the triangles $A B P$ and $P C D$ have the same orientation, they have equal areas if and only if

$$
-a b+b q+p a=p c-c d+d q
$$

using the formula for the area of a triangle in terms of the coordinates of its vertices. Using the expressions for p and q above, this condition reduces to

$$
(a c-b d)\left((a-c)^{2}+(b-d)^{2}\right)=0
$$

Since a and c have opposite signs, we see that the triangles $A B P$ and $P C D$ have the same area if and only if $a c=b d$. The last condition holds if and only if the triangles $A B E$ and $C D E$ are similar, where E is the point of intersection of $A C$ and $B D$. It is clear that this last condition holds if and only if $A B C D$ is a cyclic quadrilateral.
2. Consider one contestant. Suppose he receives a "pass" from r judges. Then he receives a "fail" from $b-r$ judges. So, the
number of pairs of judges who agree for this contestant is

$$
\begin{aligned}
\binom{r}{2}+\binom{b-r}{2} & =\frac{1}{2}\left(r^{2}+(b-r)^{2}-b\right) \\
& \geq \frac{1}{2}\left(\frac{1}{2}(r+b-r)^{2}-b\right)=\frac{1}{4}\left((b-1)^{2}-1\right)
\end{aligned}
$$

Thus

$$
\binom{r}{2}+\binom{b-r}{2} \geq \frac{1}{4}(b-1)^{2} .
$$

Since there are $\binom{b}{2}$ pairs of judges and each pair agrees on at most k contestants, the total number of agreements is at most $k\binom{b}{2}$. Since there are a contestants, we get

$$
k\binom{b}{2} \geq \frac{a}{4}(b-1)^{2} .
$$

So, $k b \geq a(b-1) / 2$ and the result follows.
3. (Solution by Arkady Slinko.) It is easy to see that d is a multiplicative function and that $d\left(p^{r}\right)=r+1$ when p is a prime. So, if the prime factorization of n is $p_{1}^{r_{1}} \cdots p_{m}^{r_{m}}$, then

$$
\begin{equation*}
\frac{d\left(n^{2}\right)}{d(n)}=\frac{\left(2 r_{1}+1\right) \cdots\left(2 r_{m}+1\right)}{\left(r_{1}+1\right) \cdots\left(r_{m}+1\right)} \tag{*}
\end{equation*}
$$

Let k be a positive integer of the form $(*)$. Clearly, k is odd and, when $n=1$, we get $k=1$. We claim that every odd integer can be represented in the form (*). We prove this by induction. Suppose that all odd $k_{0}<k$ are representable in the form $(*)$. Let $k=2^{s} k_{0}-1$, where s and k_{0} are positive integers and k_{0} is odd. Since k_{0} is representable, it suffices to prove that $\left(2^{s} k_{0}-1\right) / k_{0}$ can be represented in the form $(*)$. Letting $m=\left(2^{s}-1\right) k_{0}$, we get

$$
\begin{aligned}
\frac{2^{s} k_{0}-1}{k_{0}} & =\frac{2^{s} m-\left(2^{s}-1\right)}{m} \\
& =\frac{2 m-1}{m} \times \frac{4 m-3}{2 m-1} \times \cdots \times \frac{2^{s} m-\left(2^{s}-1\right)}{2^{s-1} m-\left(2^{s-1}-1\right)}
\end{aligned}
$$

a telescoping product of the form $(*)$. The result follows.
4. Since

$$
b\left(a^{2} b+a+b\right)-a\left(a b^{2}+b+7\right)=b^{2}-7 a
$$

if $a b^{2}+a+b$ is divisible by $a b^{2}+b+7$, then so is $b^{2}-7 a$. Now $b^{2}-7 a<a b^{2}+b+7$ and so, if $b^{2}-7 a \geq 0$, we get $b^{2}-7 a=0$. Thus $(a, b)=\left(7 t^{2}, 7 t\right)$, for some positive integer t. On the other hand, if $(a, b)=\left(7 t^{2}, 7 t\right)$, for some positive integer t, then $a b^{2}+b+7=$ $7\left(49 t^{4}+t+1\right)$ divides $a^{2} b+a+b=7 t\left(49 t^{4}+t+1\right)$.

Suppose now that $b^{2}-7 a<0$. Then $a b^{2}+b+7$ divides the positive integer $7 a-b^{2}$. If $b \geq 3$, then $a b^{2}+b+7>9 a$. Hence $b=1$ or $b=2$. If $b=1$, then $a+8$ divides $7 a-1$ and, since the multiple is at most 6 , we get $a=11$ or $a=49$. It is easy to see that $(a, b)=(11,1),(49,1)$ are solutions to the problem. Finally, if $b=2$, then $4 a+9$ divides $7 a-4$ and since the only possibility is $4 a+9=7 a-4$, we do not get an integer value for a in this case.

So, the complete list of solutions is:

$$
(11,1),(49,1),\left(7 t^{2}, 7 t\right), \text { for all } t \in \mathbb{N} .
$$

5. (Solution by Andy Liu.) It is easy to see that

$$
\angle R M B=\angle A M L=\angle M K L=\angle B S K
$$

and that

$$
\angle R B M=\angle B M K=\angle B K M=\angle B S K
$$

So the triangles $M R B$ and $K B S$ are similar. Thus $B R \times B S=$ $B K^{2}$. Since $\angle R B M=\angle S B K$ and $I B$ bisects $\angle A B C$, the lines $I B$ and $R S$ are perpendicular. Thus

$$
\begin{aligned}
I R^{2}+I S^{2} & =R B^{2}+B S^{2}+2 I B^{2} \\
& >R B^{2}+B S^{2}+2 B K^{2} \\
& =R B^{2}+B S^{2}+2 R B \times B S=R S^{2}
\end{aligned}
$$

So, since $I R^{2}+I S^{2}>R S^{2}$, the angle $R I S$ is acute.
6. Let $f\left(n^{2}(f(m))=m f(n)^{2}\right.$ for all m and n in \mathbb{N}. Let $f(1)=a$.

Then

$$
f(f(m))=a^{2} m \text { and } f\left(a n^{2}\right)=f(n)^{2}
$$

for all $m, n \in \mathbb{N}$. If $f(r)=f(s)$, then $a^{2} r=f(f(r))=f(f(s))=$ $a^{2} s$ and thus $r=s$, so that f is injective. Note that $f(a)=$ $f(f(1))=a^{2}$.

Now

$$
\begin{aligned}
(f(m) f(n))^{2} & =f(m)^{2} f(n)^{2}=f\left(a m^{2}\right) f(n)^{2}=f\left(n^{2} f\left(f\left(a m^{2}\right)\right)\right) \\
& =f\left(a^{3} m^{2} n^{2}\right)=f\left(a(a m n)^{2}\right)=f(a m n)^{2} .
\end{aligned}
$$

So, $f(a m n)=f(m) f(n)$. In particular, $f(a n)=a f(n)$. Thus

$$
a f(m n)=f(m) f(n) \text { for all } m, n \in \mathbb{N} .
$$

We claim that a divides $f(m)$ for all positive integers m. For suppose that $a \neq 1$ and let p^{k} be the highest power of the prime p that divides a. Since $a f\left(m^{2}\right)=f(m)^{2}, p^{r}$ divides $f(m)$ for all m, for some integer $r \geq k / 2$. Consider the largest such r. Then p^{k+r} divides $f(m)^{2}$, for all $m \in \mathbb{N}$. So $k+r \leq 2 r$. Thus $r \geq k$ and hence p^{k} divides $f(m)$ for all m. Thus a divides $f(m)$ for all m.

So, there exists a function $g: \mathbb{N} \rightarrow \mathbb{N}$ such that $f(n)=a g(n)$ for all n. Now $g(1)=1$ and $g\left(n^{2} g(m)\right)=m g(n)^{2}$ for all $m, n \in$ \mathbb{N}. Since $g(1998) \leq f(1998)$, the least possible value of $f(1998)$ for functions satisfying the given identity will be attained for a function f with $f(1)=1$.

Thus, we need only consider functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
f(1)=1 \text { and } f\left(n^{2} f(m)\right)=m f(n)^{2}
$$

for all $m, n \in \mathbb{N}$. Then $f(m n)=f(m) f(n)$ and $f(f(m))=m$ for all positive integers m and n. Clearly, a function f with the last two properties also satisfies $f(1)=1$ and $f\left(n^{2} f(m)\right)=m f(n)^{2}$ for all positive integers m and n. By the multiplicative property, once $f(p)$ is determined for each prime p, then f will be completely determined. Let p be a prime and suppose that $f(p)=a b$ for
certain $a, b \in \mathbb{N}$. Then $p=f(f(p))=f(a b)=f(a) f(b)$. We may suppose that $f(a)=1$. Then since $f(1)=1$, the injectivity of f implies that $a=1$. Thus $f(p)$ is a prime for all primes p and injectivity implies that f maps distinct primes to distinct primes. Since $1998=2 \times 3^{3} \times 37$, to find a function satisfying the given conditions such that $f(1998)$ is as small as possible, it is clear that letting

$$
f(2)=3, \quad f(3)=2, \quad f(37)=5
$$

and for each other prime $p, f(p)$ equal any prime not already chosen, will produce the required function. Thus the minimal possible value for $f(1998)$ is $3 \times 2^{3} \times 5=120$.

